ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์ จะเกี่ยวข้องกับ θ พิกัดของ จุด (x, y) ซึ่งในบทความนี้จะอธิบายเกี่ยวกับ ความสัมพันธ์ระหว่าง x, y กับ θ

จากบทความที่ผ่านมาเราได้รู้จักวงกลมหนึ่งหน่วยและการวัดความยาวส่วนโค้ง ในบทความนี้น้องๆจะได้รู้จักกับฟังก์ชันไซน์ (sine function) และฟังก์ชันโคไซน์ (cosine function) และวิธีการหาค่าของฟังก์ชันทั้งสอง

Sine function = {(θ, y) | y = sinθ}

cosine function = {(θ, x) | x = cosθ}

จาก P(θ) = (x, y)  และจาก x = cosθ และ y = sinθ

จะได้ว่า P(θ) = (cosθ, sinθ)

โดเมนและเรนจ์ของ sine function และ cosine function

โดเมนของฟังก์ชันไซน์และโคไซน์ คือ จำนวนจริง นั่นคือ θ ∈ \mathbb{R}

เรนจ์ของฟังก์ชันไซน์และโคไซน์คือ [-1, 1] นั่นคือ ค่าของ cosθ และ sinθ จะอยู่ในช่วง [-1, 1]

 

ความสัมพันธ์ของฟังก์ชันไซน์และโคไซน์

พิจารณาสมการวงกลมหนึ่งหน่วย (รัศมีเป็น 1)  x² + y² = 1

เมื่อแทน x = cosθ และ y = sinθ ในสมการของวงกลมหนึ่งหน่วย

จะได้ว่า (cosθ)² + (sinθ)² = 1 สามารถเขียนได้อีกรูปแบบหนึ่ง คือ

cos²θ + sin²θ = 1

การหา ค่าของฟังก์ชันไซน์และโคไซน์

การหาค่าฟังก์ชันไซน์และโคไซน์นั้น น้องๆจะต้องมีพื้นฐานเรื่องความยาวส่วนโค้งและพิกัดจุดปลายส่วนโค้งพร้อมทั้งรู้เรื่องจตุภาคด้วย น้องๆสามารถดูเนื้อหาได้ที่ >>ความยาวส่วนโค้งของวงกลมหนึ่งหน่วย<<

ค่าของฟังก์ชันไซน์และโคไซน์

กำหนดให้ P(θ) = (x, y) และ x = cosθ , y = sinθ

พิจารณา θ = 0 จะได้ว่า พิกัดจุดของ P(0) คือ (1, 0) นั่นคือ P(0) = (1, 0)

ดังนั้น x = 1 และ y = 0 นั่นคือ cos(0) = 1 และ sin(0) = 0

พิจารณาที่ θ = \frac{\pi }{2} จะได้ว่า P( \frac{\pi }{2} ) = (0, 1)

ดังนั้น cos( \frac{\pi }{2} ) = 0 และ sin( \frac{\pi }{2} ) = 1

พิจารณา θ = \pi จะได้ว่า P( \pi) = (-1, 0)

ดังนั้น cos( \pi) = -1 และ sin( \pi) = 0

พิจารณาที่ θ = \frac{3\pi }{2} จะได้ว่า P( \frac{3\pi }{2} ) = (0, -1)

ดังนั้น cos( \frac{3\pi }{2} ) = 0 และ cos( \frac{3\pi }{2} ) = -1

การหาค่า sinθ cosθ โดยใช้มือซ้าย

ค่าของฟังก์ชันไซน์และโคไซน์

  • แต่ละนิ้วจะแทนค่าของ θ ดังรูป
  • เราจะหาค่าโดยการพับนิ้ว เช่น ต้องการหา sin( \frac{\pi }{3} ) เราก็จะพับนิ้วนางลง
  • เราจะให้นิ้วที่พับลงเป็นตัวแบ่งระหว่าง cos กับ sin ซึ่งจะแบ่งออกเป็นฝั่งซ้ายและฝั่งขวา
  • ช่องว่างในรูทคือ จำนวนนิ้วที่เรานับได้เมื่อเราพับนิ้วลง
  • หากต้องการค่า sin ให้นำจำนวนนิ้วฝั่งซ้ายมาเติมในรูท
  • และหากต้องการค่า cos ให้นำจำนวนนิ้วฝั่งขวามาเติมในรูท

หากน้องๆยังงงๆเรามาดูตัวอย่างกันค่ะ

ต้องการหาค่า cos( \frac{\pi }{4} ) และ sin( \frac{\pi }{6} )

cos( \frac{\pi }{4} )

ค่าของฟังก์ชันไซน์และโคไซน์

จากโจทย์เราต้องการหาค่าโคไซน์ ที่ θ = \frac{\pi }{4} ซึ่งตรงกับนิ้วกลาง

ดังนั้นเราจึงพับนิ้วกลางลง และหาค่าโคไซน์เราต้องดูจำนวนนิ้วฝั่งขวาซึ่งก็คือนิ้วที่ถูกระบายด้วยสีส้ม จะเห็นว่ามี 2 นิ้ว ดังนั้น cos( \frac{\pi }{4} ) = \frac{\sqrt{2}}{2}

 

sin( \frac{\pi }{6} )

ค่าของฟังก์ชันไซน์และโคไซน์

จากโจทย์ต้องการหาค่าฟังก์ชันไซน์ ที่ θ = \frac{\pi }{6} เราจึงพับนิ้วชี้ลง และดูจำนวนนิ้วฝั่งซ้ายซึ่งก็คือนิ้วที่ถูกทาด้วยสีฟ้า ดังนั้น sin( \frac{\pi }{6} ) = \frac{1}{2}

แล้วสมมติว่า θ เป็นค่าอื่นๆนอกเหนือจากค่าเหล่านี้ล่ะ เช่น \frac{2\pi }{3} เราจะหายังไงดี???

จริงๆแล้วค่าของ \frac{2\pi }{3} นั้นเราสามารถดูของ \frac{\pi }{3} ได้เลย แต่!!!! เครื่องหมายอาจจะต่างกัน ให้น้องๆสังเกตว่า ค่าของ \frac{2\pi }{3} นั้นอยู่ควอดรันต์ที่เท่าไหร่ แล้วน้องจะรู้ว่าค่า x ควรเป็นลบหรือเป็นบวก ค่า y ควรเป็นลบหรือเป็นบวก

อย่างเช่น cos( \frac{2\pi }{3} )

เรามาดูกันว่า θ = \frac{2\pi }{3} อยู่ควอดรันต์เท่าไหร่

จะเห็นว่าอยู่ควอดรันต์ที่ 2 ซึ่ง (- , +) ดังนั้น ค่า x เป็นจำนวนลบ ค่า y เป็นจำนวนบวก และเรารู้ว่า x = cosθ ดังนั้น ค่า cos( \frac{2\pi }{3} ) เป็นจำนวนลบแน่นอน

จากนั้นใช้มือซ้ายเพื่อหาค่า cos โดยใช้ค่า θ = \frac{\pi }{3} ได้เลย จะได้ว่า cos( \frac{\pi }{3} ) = \frac{1}{2}

ดังนั้น cos( \frac{2\pi }{3} ) = -\frac{1}{2}

 

นอกจากจะดูหาค่าโดยใช้มือซ้ายแล้ว น้องๆสามารถดูตามรูปด้านล่างนี้ได้เลยค่ะ

ในวงกลมที่ระบายสีฟ้านั้น คือค่าของ θ  ซึ่งแต่ละ θ ก็จะบอกพิกัดจุด (x, y) ซึ่งก็คือค่าของ cosθ และ sinθ นั่นเอง

เช่น sin( \frac{5\pi }{6} ) = \frac{1}{2} และ cos( \frac{5\pi }{6} ) = -\frac{\sqrt{3}}{2}

ตัวอย่างการหาค่าฟังก์ชันไซน์และโคไซน์

1) หาค่า sin( \frac{7\pi }{6} )

วิธีทำ หาค่า sin( \frac{\pi }{6} )

จะได้ว่า sin( \frac{\pi }{6} ) = \frac{1}{2}

จากนั้นดูพิกัดจุดของ P( \frac{7\pi }{6} ) จะได้ว่า อยู่ควอดรันต์ที่ 3 ซึ่ง (- , -) นั่นคือ ค่า x เป็นจำนวนลบ (cosθ เป็นจำนวนลบ) และค่า y เป็นจำนวนลบ

และจาก y = sinθ

ดังนั้น sin( \frac{7\pi }{6} ) = -\frac{1}{2}

 

2) หาค่า sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} )

วิธีทำ จากความสัมพันธ์ของไซน์และโคไซน์ sin²θ + cos²θ = 1

จะได้ว่าค่าของ sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} ) = 1

เนื่องจากว่าเราเรียนคณิตศาสตร์เราจะต้องไม่เชื่ออะไรง่ายๆ ดังนั้นเราจะมาหาค่าโดยใช้วิธีตรงกันค่ะ

จาก sin( \frac{\pi }{6} ) = \frac{1}{2} จะได้ว่า sin²( \frac{\pi }{6} ) = \frac{1}{4} และ cos( \frac{\pi }{6} ) = \frac{\sqrt{3}}{2} จะได้ว่า cos²( \frac{\pi }{6} ) = \frac{3}{4}

ดังนั้น  \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1

ดังนั้น สรุปได้ว่า sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} ) = 1

 

3) หาค่า cos²( \frac{\pi }{2} ) + cos²( \frac{3\pi }{2} ) – cos²( \pi )

วิธีทำ จาก cos( \frac{\pi }{2} ) = 0  cos( \frac{3\pi }{2} ) = 0 และ cos( \pi ) = -1

จะได้ว่า cos²( \frac{\pi }{2} ) = 0  cos²( \frac{3\pi }{2} ) = 0 และ cos²( \pi ) = (-1)² = 1

ดังนั้น cos²( \frac{\pi }{2} ) + cos²( \frac{3\pi }{2} ) – cos²( \pi ) = 0 + 0 – 1 = -1

น้องๆสามารถหาแบบฝึกหัดมาทำเพิ่มเติมโดยใช้กฎมือซ้ายในการช่วยหาค่าฟังก์ชันแต่ทั้งนี้น้องๆก็ต้องมีพื้นฐานเกี่ยวกับความยาวจุดปลายส่วนโค้งด้วยนะคะ และการหาค่าฟังก์นั้นนี้หากน้องๆทำบ่อยจะทำให้น้องจำได้ และเวลาสอบก็จะช่วยให้ทำข้อสอบได้เร็วยิ่งขึ้นด้วยค่ะ

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การชักชวน และแนะนำในภาษาอังกฤษ

วิธีการพูดเสนอแนะ ชักชวน และแนะนำในภาษาอังกฤษ

  สวัสดีค่ะนักเรียน ม.1 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูวิธีการพูดให้ข้อเสนอแนะ ชักชวน และแนะนำกันค่ะซึ่งในการเสนอแนะ หรือชักชวนนั้น ผู้พูดจะแสดงความคิดเห็นเสนอแนะ เพื่อให้กระทำสิ่งใดสิ่งหนึ่งด้วยกัน มีการใช้ภาษาหลายระดับ และใช้รูปประโยคหลายชนิด เช่นเดียวกับการพูดในความหมายต่างๆ ที่ผ่านมาเราจึงต้องใช้รูปประโยคต่างๆ เช่นประโยคบอกเล่า คำสั่ง ชักชวน เพื่อให้ผู้ฟังทำตาม รวมถึงเทคนิคการตอบรับและปฏิเสธ ดังในตัวอย่างรูปแบบประโยคด้านล่างนะคะ   1. ประโยคบอกเล่า (Statement)  

Vtodo+Present Simple Tense

การใช้ V. to do ในรูปแบบของ Present Simple Tense

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ V. to do ในรูปแบบของ Present Simple Tense หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go! V. to do คืออะไร   ปรกติแล้วคำว่า do นั้นแปลว่าทำ แต่เมื่ออยู่ในประโยคแล้ว V. to do

passive modals

Passive Modals: It can be done!

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Passive Voice ในกริยาจำพวก Modals กันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

Imperative for Advice

Imperative for Advice: การให้คำแนะนำ

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนเรื่องง่ายๆ อย่าง Imperative for Advice กัน จะง่ายขนาดไหนเราลองไปดูกันเลยครับ

อิศรญาณภาษิต

อิศรญาณภาษิต ศึกษาวรรณคดีคำสอนของไทย

อิศรญาณภาษิต เป็นวรรณคดีที่มีเนื้อหาสอนให้ผู้อ่านรู้จักลักษณะของกลอนเพลงยาวและยังสอดแทรกข้อคิดต่าง ๆ ไว้อีกมากมาย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงประวัติความความเป็นมา ผู้แต่ง ลักษณะคำประพันธ์ของกลอนเพลงยาว และตัวบทที่น่าสนใจ ๆ ในเรื่อง ถ้าน้อง ๆ อยากรู้แล้วว่าวรรณคดีเรื่องนีมีความเป็นมาและความสำคัญอย่างไร เหตุใดจึงอยู่ในแบบเรียนภาษาไทยในเราได้ศึกษากันอยู่ตอนนี้ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ     ความเป็นมาของ   อิศรญาณภาษิต (อ่านว่า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1