โดเมนของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย D_r

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย D_r คือสมาชิกตัวหน้า

เช่น r_1 = {(2, 2), (3, 4), (8, 9)}

จะได้ว่า D_{r_1} = {2, 3, 8}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)}

สรุปได้ว่า D_{r_2} = {1}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

โดเมนของ r_3 คือ ค่า x ทุกตัวที่เป็นไปได้ ที่ทำให้ y เป็นจำนวนจริง

การที่จะหา x ที่ทำให้ y เป็นจำนวนจริงนั้น จำนวนของ x ที่เป็นไปได้มีเยอะมากๆๆๆๆ หายังไงก็ไม่หมดแน่นอน เราจึงต้องเปลี่ยนมา x ที่ทำให้ y ไม่เป็นจำนวนจริง ถ้าไม่มี เราสามารถตอบได้เลยว่า โดเมนคือ จำนวนจริง

แต่! ในตัวอย่างนี้เหมือนจะมี x ที่ทำให้ y ไม่เป็นจำนวนจริง นั่นคือ x = 0 จะได้ว่า y = \frac{1}{0} ซึ่ง ไม่นิยาม

ดังนั้น โดเมนคือ จำนวนจริงทั้งหมดยกเว้น 0 เขียนได้เป็น D_{r_3} = \mathbb{R} – {0}

 

ตัวอย่างการหาโดเมนของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น D_r = {1, 2, 3} = A

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จะเห็นว่าค่ากราฟนั้นกางออกเรื่อยๆ  ค่า x เป็นไปได้เรื่อยๆไม่สิ้นสุด จาก โดเมนของความสัมพันธืคือ สมาชิกตัวหน้าของความสัมพันธ์ใน r นั่นคือ x นั่นเอง

ดังนั้น D_r = \mathbb{R}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จะเห็นได้ว่า กราฟในรูปนั้น x เป็นอะไรก็ได้ ยกเว้น 3 เพราะ  เมื่อลองลากเส้น x = 3 แล้ว กราฟของ y = \frac{1}{x-3} นั้นไม่ตัดกับเส้น x = 3 เลย

หรือเราลองสังเกตจากสมการก็ได้ว่า ถ้า x = 3 จำทำให้ตัวส่วนเป็น 0 ซึ่งหาค่าไม่ได้ (ไม่นิยาม) ดังนั้น x อยู่ใน R ยกเว้น 3

และโดเมนก็คือ ค่า x เพราะ x เป็นสมาชิกตัวหน้าของความสัมพันธ์ r 

ดังนั้น D_r = R – {3} หรือ D_r = {x : x ∈ R และ x ≠ 3}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จะเห็นว่ากราฟที่ได้ x มีค่าตั้งแต่ 0 ไปเรื่อยๆ ไม่สิ้นสุด นั่นคือ x เป็นจำนวนจริงที่มากกว่าเท่ากับ 0

และโดเมนก็คือ ค่า x เพราะ x เป็นสมาชิกตัวหน้าของความสัมพันธ์ r 

ดังนั้น D_r = {x : x เป็นจำนวนจริง และ x ≥ 0}

 

วิดีโอ โดเมนของความสัมพันธ์

 

 

เนื้อหาที่เกี่ยวข้องกับโดเมนของความสัมพันธ์

 

  1. กราฟของความสัมพันธ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

บทพากย์เอราวัณ

บทพากย์เอราวัณ ที่มาของวรรณคดีพากย์โขนอันทรงคุณค่า

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้องรับเข้าสู่เนื้อหาวิชาภาษาไทยที่จะมาให้สาระความรู้ดี ๆ ซึ่งวันนี้เราจะมาเรียนรู้ความเป็นมาของวรรณคดีเรื่องหนึ่งที่มักจะใช้ในการแสดงโขน นั่นก็คือบทพากย์เอราวัณแน่นอนว่าน้อง ๆ ในระดับมัธยมต้นจะต้องได้เรียนเรื่องนี้ เพราะเป็นวรรณคดีอีกเรื่องที่แสดงถึงพระปรีชาสามารถของรัชกาลที่ 2 ในด้านกวีนิพนธ์จากการที่เลือกใช้ถ้อยคำภาษาที่สวยงามเพื่อมาบรรยายถึงลักษณะของช้างเอราวัณได้อย่างดี ดังนั้น ถ้าพร้อมแล้วมาดูกันว่าวันนี้เรามีเนื้อหาที่น่าสนใจอะไรมาฝากน้อง ๆ กันบ้างดีกว่า ประวัติความเป็นมา สำหรับวรรณคดี บทพากย์เอราวัณ เป็นอีกหนึ่งผลงานการพระราชนิพนธ์ในรัชสมัยของพระบาทสมเด็จพระพุทธเลิศหล้านภาลัย (รัชกาลที่ 2) ซึ่งถือเป็นบทที่นิยมนำไปใช้ในการแสดงโขน โดยได้เค้าโครงเรื่องมาจาก “รามายณะ”

ความน่าเชื่อถือของสื่อที่ฟัง

ฟังอย่างไรให้ได้สาระประโยชน์ดี ๆ ด้วยวิธีวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟัง

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้อนรับเข้าสู่เนื้อหาในบทเรียนภาษาไทยกันอีกครั้ง สำหรับบทเรียนในวันนี้ต้องบอกว่ามีประโยชน์มาก ๆ และเราควรจะต้องศึกษาไว้เพื่อนำไปใช้ในการฟัง หรือคัดกรองสิ่งต่าง ๆ รอบตัวที่เรารับฟังมาให้มากขึ้น ซึ่งเราจะพาน้อง ๆ มาฝึกฝนการวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟังกัน เพราะในปัจจุบันเราสามารถรับสารได้หลากหลายรูปแบบมีทั้งประโยชน์ และโทษ ดังนั้น เราจึงต้องมีทักษะนี้ติดตัวไว้แยกแยะว่าสื่อนั้นมีความน่าเชื่อถือมากน้อยแค่ไหน ถ้าน้อง ๆ พร้อมแล้วเรามาเริ่มเรียนกันเลย   ความหมายของความน่าเชื่อถือ และสื่อ ความน่าเชื่อถือ หมายถึง

conjunctions

เรียนรู้การใช้คำสันธาน (Conjunctions) ในภาษาอังกฤษ

สวัสดีน้องๆ ม. 3 ทุกคนนะครับ วันนี้เราจะมาทำความรู้จักกับ Conjuctions หรือคำสันธานในภาษาอังกฤษ พร้อมวิธีการใช้คำสันธานในประโยคแบบเข้าใจง่ายๆ กันครับ

กระเช้าสีดา นิทานสอนใจที่สอดแทรกตำนานของพรรณไม้

น้อง ๆ รู้จัก กระเช้าสีดา กันไหมคะ พืชชนิดนี้มีถิ่นกำเนิดอยู่ที่อินเดีย และเป็นพรรณไม้ที่มีตำนานมาจากวรรณคดีที่เราคุ้นเคยกันเป็นอย่างดี ซึ่งก็คือเรื่อง รามเกียรติ์นั่นเองค่ะ แล้ววรรณคดีเรื่องกระเช้าสีดานี้จะมีความเป็นมาและเรื่องย่อที่เกี่ยวกับรามเกียรติ์อย่างไร ถ้าพร้อมแล้วเราไปหาคำตอบด้วยกันเลยค่ะ   ความเป็นมา กระเช้าสีดา     กระเช้าสีดาเป็นนิทานเรื่องหนึ่งในหนังสือรวมนิทานของพระสารประเสริฐ (ตรี นาคะประทีป) แต่เมื่อพ.ศ. 2485 มีลักษณะเป็นร้อยแก้ว เป็นเรื่องราวเกี่ยวกับรูปร่าง ลักษณะนิสัย ความเป็นอยู่ของพวกภูต

ส่วน 10 หรือ ส่วน 1000 แปลงเป็นทศนิยมกันได้หมดถ้าสดชื่น!

จากบทความที่แล้วเราได้ทราบความสัมพันธ์ของเศษส่วนและทศนิยมไปแล้ว เชื่อว่าน้อง ๆหลายคนคงเกิดคำถามในใจว่า แล้วถ้าเจอเศษส่วนที่ตัวส่วนไม่ใช่ 10, 100 หรือ 1000 ต้องทำอย่างไร บทความนี้จะมาไขข้อสงสัยพร้อมกับแสดงวิธีคิดที่ทำให้น้อง ๆต้องพูดเป็นเสียงเดียวกันว่า ง๊ายง่าย!

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ บทนิยาม ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า  f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ และ ใดๆใน A ถ้า  < 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1