แบบฝึกหัดความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

แบบฝึกหัดความสัมพันธ์

แบบฝึกหัดความสัมพันธ์ เป็นการทบทวนเนื้อหาเกี่ยวกับความสัมพันธ์ ได้แก่ เรื่องโดเมนและเรนจ์ของความสัม กราฟของความสัมพันธ์ และตัวผกผันของความสัมพันธ์

ก่อนทำแบบฝึกหัดความสัมพันธ์ บทความที่น้องๆควรรู้ คือ

  1. โดเมนของความสัมพันธ์
  2. เรนจ์ของความสัมพันธ์
  3. กราฟของความสัมพันธ์
  4. ตัวผกผันของความสัมพันธ์

 

แบบฝึกหัด

1.) ถ้า (x, 5) = (3, x – y) แล้ว 3x – y มีค่าเท่าใด

วิธีทำ หาค่า x และ y เพื่อนำมาแทนค่าในสมการ 3x – y

เนื่องจาก (x, 5) = (3, x – y) ได้ว่า สมาชิกตัวหน้าของคู่อันดับทั้งสองต้องเม่ากัน และ สมาชิกตัวหลังของคู่อันดับทั้งสองต้องเท่ากัน

นั่นคือ x = 3 และ 5 = x – y

ต้องการหา y 

พิจารณา 5 = x- y  เนื่องจากเรารู้ว่า x = 3

เมื่อแทน x = 3 ในสมการ 5 = x- y จะได้ 5 = 3 – y แก้สมการจะได้ y = 3 – 5 = -2

ดังนั้น x = 3 และ y = -2

ตอนนี้เราได้ค่า x และ y มาแล้ว ดังนั้นสามารถแทน ค่า x, y ในสมการ 3x – y จะได้ดังนี้

3x – y = 3(3) – (-2) = 9 + 2 = 11

 

2.) ให้ B เป็นเซตของจำนวนเต็ม และ A = {x : x เป็นจำนวนเต็มบวกที่น้อยกว่า 5} และ r = {(x, y) ∈ A × B : 2y = x}ให้ยกตัวอย่างสมาชิกคู่อันดับในความสัมพันธ์ r

วิธีทำ จาก B เป็นเซตของจำนวนเต็ม จะได้ว่า B = {…, -3, -2, -1, 0, 1, 2, …}

และจาก A = {x : x เป็นจำนวนเต็มบวกที่น้อยกว่า 5} จะได้ว่า A = {1, 2, 3, 4}

จากโจทย์ r = {(x, y) ∈ A × B : 2y = x}

A × B หมายความว่า คู่อันดับจะมีสมาชิกตัวหน้าที่มาจาก A และสมาชิกตัวหลังมาจาก B

จาก A = {1, 2, 3, 4} แสดงว่า x (สมาชิกตัวหน้า) ที่เป็นไปได้คือ 1, 2, 3, 4

และจาก B เป็นเซตของจำนวนเต็ม แสดงว่า y (สมาชิกตัวหลัง) จะต้องเป็นจำนวนเต็ม

หาคู่อันดับในความสัมพันธ์ r ที่สอดคล้องกับเงื่อนไข 2y = x

แทน x ที่เป็นไปได้ในสมการ 2y = x

ที่ x = 1 ;  2y = 1 >>  y = \frac{1}{2}   จะเห็นว่า y ∉ B ดังนั้น (1, \frac{1}{2}) ไม่เป็นคู่อันดับในความสัมพันธ์ r

x = 2 ; 2y = 2 >> y = 1 ซึ่ง (2, 1) ∈ A × B ดังนั้น (2, 1) เป็นคู่อันดับในความสัมพันธ์ r

x = 3 ; 2y = 3 >> y = \frac{3}{2} จะเห็นว่า (3, \frac{3}{2}) ∉ A × B ดังนั้น (3, \frac{3}{2}) ไม่เป็นคู่อันดับในความสัมพันธ์ r

x = 4 ; 2y = 4 >> y = 2 ซึ่ง (4, 2) ∈ A × B ดังนั้น (4, 2) เป็นคู่อันดับในความสัมพันธ์ r

ดังนั้น r = {(2, 1), (4, 2)}

 

3.) r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : \sqrt{x}+\sqrt{y+1}=2} ให้หาโดเมนและเรนจ์ของความสัมพันธ์ r

วิธีทำ 

แบบฝึกหัดความสัมพันธ์

 

4.) ให้ r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : x + y = 1} จงหา r^{-1}

วิธีทำ 

แบบฝึกหัดความสัมพันธ์

 

วิดีโอแบบฝึกหัดความสัมพันธ์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

บทนมัสการมาตาปิตุคุณ

บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ บทอาขยานที่ควรค่าแก่การจำ

จนถึงตอนนี้น้อง ๆ คงได้เรียนวรรณคดีกันมามากมายหลายเรื่อง แต่ละเรื่องก็อาจจะมีการใช้ลักษณะคำประพันธ์ที่ต่างกันออกไป หรือซ้ำกันบ้าง บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ ก็เป็นหนึ่งในวรรณคดีไทยที่อยู่ในแบบเรียนของน้อง ๆ แต่ความพิเศษคือลักษณะคำประพันธ์ที่น้อง ๆ อาจจะไม่เคยได้ยินมาก่อนอย่าง อินทรวิเชียร์ฉันท์ 11 จะเป็นอย่างไรบ้าง ถ้าพร้อมแล้วไปเรียนรู้วรรณคดีเรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของบทนมัสการมาตาปิตุคุณ และอาจาริยคุณ   บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ เป็นบทร้อยกรองขนาดสั้น มีเนื้อหาแสดงคุณของบิดามารดาและครูอาจารย์ ประพันธ์ขึ้นโดย

ประมาณค่าทศนิยมด้วยการปัดทิ้งและปัดทด

บทความนี้จะพูดถึงเรื่องพื้นฐานของทศนิยมอีก 1 เรื่องก็คือการประมาณค่าใกล้เคียงของทศนิยม น้อง ๆคงอาจจะเคยเรียนการประมาณค่าใกล้เคียงของจำนวนเต็มมาแล้ว การประมาณค่าทศนิยมหลักการคล้ายกับการประมาณค่าจำนวนเต็มแต่อาจจะแตกต่างกันที่คำพูดที่ใช้ เช่นจำนวนเต็มจะใช้คำว่าหลักส่วนทศนิยมจะใช้คำว่าตำแหน่ง บทความนี้จึงจะมาแนะนำหลักการประมาณค่าทศนิยมให้น้อง ๆเข้าใจ และสามารถประมาณค่าทศนิยมได้อย่างถูกต้อง

ลิลิตตะเลงพ่าย

ถอดความหมายตัวบทเด่นใน ลิลิตตะเลงพ่าย

ลิลิตตะเลงพ่าย เป็นวรรณคดีเรื่องดังที่มีตัวบทเด่น ๆ มากมาย สำหรับการถอดคำประพันธ์ในวันนี้เราได้คัดเลือกบทเด่น ๆ มาให้น้อง ๆ ได้เรียนกันถึง 13 บทเลยทีเดียว แต่เพราะเนื้อหาที่สนุก ภาษาที่สละสลวย รับรองว่าน้อง ๆ จะไม่มีทางเบื่อวรรณคดีเรื่องนี้แน่นอน ถ้าพร้อมแล้วเราไปเรียนความหมายของแต่ละบทพร้อมกันเลยนะคะ ตัวบทเด่น ๆ ใน ลิลิตตะเลงพ่าย   บทที่ 1  

จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ  ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ บทนิยาม ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า  f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ และ ใดๆใน A ถ้า  < 

มารู้จักกับการถามทางในภาษาอังกฤษ Asking for Direction in English

สวัสดีค่ะนักเรียนป.5 ที่น่ารักทุกคน เคยมั้ยที่เราเจอฝรั่งถามทางแล้วตอบไม่ได้ ทำได้แค่ชี้ๆ แล้วก็บ๊ายบาย หากทุกคนเคยเจอปัญหานี้ ต้องท่องศัพท์และรู้โครงสร้างประโยคที่สำคัญในการถามทางแล้วล่ะ  หากพร้อมแล้วก็ไปลุยกันเลย   มารู้จักกับการถามทางในภาษาอังกฤษ Asking for Direction in English   การถามทิศทางจะต้องมีประโยคเกริ่นก่อนเพื่อให้คนที่เราถาม ตั้งตัวได้ว่า กำลังจะโดนถามอะไร ยังไง ซึ่งเราสามารถถามได้ทั้ง คำถามแบบสุภาพเมื่อพูดกับคนที่เราไม่คุ้นเคย หรือ คำถามทั่วไปเมื่อพูดกับคนใกล้ตัว  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1