เส้นตรง

เส้นตรง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เส้นตรง

เส้นตรง มีสมการรูปแบบทั่วไปคือ Ax + By + C = 0 และสมการรูปแบบมาตรฐานของเส้นตรงจะเขียนอยู่ในรูป y = mx + C ซึ่งจะอยู่ในหัวข้อ “สมการเส้นตรง” เส้นตรงหนึ่งเส้นประกอบไปด้วยจุดหลายจุด ซึ่งจุดเหล่านี้จะทำให้เราสามารถหาความชันได้ และเมื่อเราทราบความชันก็จะสามารถหาสมการเส้นตรงได้นั่นเอง

ความชันของเส้นตรง

ความชันของเส้นตรง ส่วนใหญ่นิยมใช้ m แทนความชัน การหาความชันนั้นเราจะต้องรู้จุดบนเส้นตรงอย่างน้อย 2 จุด

สมมติให้ (x_1,y_1) และ (x_2,y_2) เป็นจุดบนเส้นตรง L  ดังรูป

จะได้ว่า ความชันของเส้นตรง L หาได้จาก

เส้นตรง

 

เส้นตรงที่ขนานกัน

**เส้นตรงที่ขนานกัน ความชันจะเท่ากัน**

ตัวอย่าง

เส้นตรงที่ตั้งฉากกัน

**เส้นตรงสองเส้นตั้งฉากกัน ความชันคูณกันได้เท่ากับ -1**

ตัวอย่าง

 

 

สมการของ เส้นตรง

กรณี 1 เส้นตรงขนานแกน x 

เส้นตรง

จากรูปจะเห็นว่า เส้นตรงขนานแกน x และตัดแกน y ที่จุด (0, b) ทำให้ได้ว่า ไม่ว่าค่า x จะเป็นเท่าไหร่ ก็จะได้ y = b

ดังนั้น สมการเส้นตรงนี้คือ y = b เมื่อ b คือค่าคงที่

เช่น

เส้นตรง

 

 

กรณี 2 เส้นตรงทับแกน x

เส้นตรง

จะเห็นว่า เส้นตรงทับแกน x แกน y ที่จุด (0,0) จะได้ว่า สมการเส้นตรงนี้คือ  y = 0

 

 

กรณี 3 เส้นตรงขนานแกน y

จะเห็นว่าเส้นตรงนั้น ขนานกับแกน y และตัดแกน x ที่จุด (a, 0) ดังนั้น จะได้สมการเส้นตรงเป็น x = a เมื่อ a เป็นค่าคงที่

 

กรณี 4 เส้นตรงทับแกน y

จากรูป เป็นเส้นตรงที่ทับกับแกน y และตัดแกน x ที่จุด (0,0) ดังนั้นจะได้ว่า เส้นตรงนี้คือ เส้นตรง x = 0 

 

กรณี 5 เส้นตรงไม่ขนานกับแกน x และแกน y

จากกราฟเส้นตรงเราจะได้ว่า ความชันของเส้นตรง คือ {\color{Blue} m=\frac{y-y_1}{x-x_1}} และเส้นตรงนี้ผ่านจุด (x_1,y_1)

เมื่อจัดรูปสมการแล้วจะได้ว่า  {\color{Blue} y-y_1=m(x-x_1)}

เส้นตรง

นอกจากรูปแบบมาตรฐานแล้วเราก็ยังมีสมการเส้นตรงรูปแบบทั่วไปด้วย เชื่อว่าน้องๆอาจจะเคยเห็นมาบ้างแล้ว นั่นก็คือ

Ax + By + C = 0

เส้นตรง

ตัวอย่าง

หาสมการเส้นตรงที่ผ่านจุด (2, 3) และขนานกับเส้นตรง 2x – y +3 = 0

วิธีทำ

 

เส้นตรง

 

วิดิโอทบทวนความรู้

วิดีโอนี้เป็นวิดีโอเกี่ยวกับกราฟของเส้นตรง ซึ่งจะเป็นพื้นฐานให้น้องๆเรียนเรื่องเรขาคณิตวิเคราะห์ ได้เข้าใจมากขึ้น หากน้องๆคนไหนลืมเนื้อหามัธยมต้นไปหมดแล้ว วิดีโอนี้จะช่วยรื้อฟื้นความจำของน้องๆได้ดีเลยค่ะ

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

รูปแบบของประพจน์ที่สมมูลกัน

การสมมูลกันของประพจน์สำคัญอย่างไร?? ถือว่าสำคัญค่ะ เพราะถ้าเรารู้ว่าประพจน์ไหนสมมูลกับประพจน์อาจจะทำให้การตรวจสอบการเป็นสัจนิรันดร์และการหาค่าความจริงง่ายขึ้น หลังจากอ่านบทความนี้จบ น้องๆจะสามารถทำแบบฝึกหัดเรื่องการสมมูลได้และพร้อมทำข้อสอบได้แน่นอน

หลักการของอัตราส่วนที่เท่ากัน

หลักการของอัตราส่วนที่เท่ากัน

ในบทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

การนำเสนอข้อมูลในรูปแบบกราฟเส้น

ในบทคาวมนี้จะนำเสนอเนื้อของบทเรียนเรื่องกราฟเส้น นักเรียนจะสามารถเข้าในหลักการอ่านและการวิเคราะห์ข้อมูลจากกราฟเส้น รวมไปถึงสามารถมองความสัมพันธ์ของข้อมูลในแกนแนวตั้งและแนวนอนของกราฟเส้นได้อย่างถูกต้อง

การบอกลักษณะต่างๆ โดยใช้คำคุณศัพท์ Profile

การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิค การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์ (Descriptive Adjective) กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า    ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง การแก้สมการกำลังสอง สามารถทำได้โดยการ แยกตัวประกอบพหุนามกำลังสอง และใช้สูตร เราแก้สมการเพื่อหาคำตอบหรือหาค่าของตัวแปร ในบทความนี้พี่จะพูดถึงสมการกำลังสองตัวแปรเดียว ซึ่งอยู่ในรูป ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0 ตัวอย่างสมการกำลังสองตัวแปรเดียว 

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1