เรนจ์ของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย R_r

 

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย R_r คือสมาชิกตัวหลัง

เช่น r_1 = {(2, 2), (3, 5), (8, 10)}

จะได้ว่า R_{r_1} = {2, 5, 10}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)} จากเรนจ์ของความสัมพันธ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r

สรุปได้ว่า R_{r_2} = {2}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

พิจารณากราฟของสมการ y = \frac{1}{x}

เรนจ์ของความสัมพันธ์

จะเห็นว่ากราฟของ y = \frac{1}{x} ไม่ตัดแกน x นั่นคือ y ≠ 0

และจาก เรนจ์ของความสัมพันธ์คือ สมาชิกตัวหลังของคู่อันดับ ซึ่งก็คือ y นั่นเอง 

หรืออาจจะสังเกตจากสมการก็ได้ เนื่องจาก x เป็น 0 ไม่ได้ นั่นก็แปลว่ายังไง y ก็ไม่เป็น 0 แน่นอน

ดังนั้น R_{r_3} = {y : y  เป็นจำนวนจริง และ y ≠ 0}

 

ตัวอย่างการหาเรนจ์ของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น R_r = {2, 4, 6}

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า ค่า y มีค่าตั้งแต่ 0 ทำให้ได้ว่า y เป็นจำนวนจริงที่มากกว่าหรือเท่ากับ 0 

หรือจะสังเกตจากสมการเลยก็ได้ จาก y = x²  จากที่เรารู้อยู่แล้วว่า จำนวนจริงยกกำลังสองยังไงก็ไม่เป็นลบแน่นอน เราเลยรู้ว่า y ยังไงก็ต้องเป็นบวกหรือ 0 

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≥ 0}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า กราฟไม่ตัดแกน x เลย (จุดที่กราฟตัดแกน x คือจุดที่ y = 0) นั่นคือ y เป็นอะไรก็ได้แต่ไม่มีทางเป็น 0 

หรือจะสังเกตจากสมการ y = \frac{1}{x-3} จากที่รู้ว่า x นั้นเป็น 3 ไม่ได้ (เพราะจะทำให้ y หาค่าไม่ได้) แต่เมื่อแทน x เป็นจำนวนจริงอื่น ยังไง y ก็ไม่มีทางเป็น 0 เพราะตัวเศษเป็นค่าคงที่

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≠ 0}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า y ไม่เป็นลบเลย นั่นคือ y มากกว่าหรือเท่ากับ 0

หรือจะสังเกตจากสมการก็ได้ จากสมการ y = \sqrt{x} จากที่เรารู้ว่าโดเมนหรือ x เป็นลบ ไม่ได้ นั่นคือ x มากกว่าหรือเท่ากับ 0 ทำให้ได้ว่า y ไม่มีทางเป็นลบเหมือนกัน

ดังนั้น R_r = {y : y ∈ R และ y ≥ 0}

 

วิดีโอ เรนจ์ของความสัมพันธ์

 

เนื้อหาที่ควรรู้และเกี่ยวข้องกับเรนจ์ของความสัมพันธ์

  1. กราฟของความสัมพันธ์
  2. โดเมนของความสัมพันธ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

M1 การใช้ Verb Be

การใช้ Verb Be

สวัสดีค่ะนักเรียนชั้นม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Verb Be กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! ความหมาย   Verb be ในที่นี้จะแปลว่า Verb to be นะคะ แปลว่า เป็น อยู่ คือ ซึ่งหลัง verb to

Profile where + preposition P6

การใช้ประโยค Where’s the + (Building) + ? It’s + (Preposition Of Place)

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาทุกคนไปเรียนรู้เกี่ยวกับ ประโยค การถามทิศทาง แต่เอ้ะ Where is the building? แปลว่า ตึกอยู่ที่ไหน ประโยคนี้เป็นการถามทางแบบห้วนๆ ที่ใช้กับคนที่เราคุ้นชินหรือคนที่เรารู้จัก แต่หากนักเรียนต้องอยู่ในสถานการณ์ที่ต้องถามกับคนแปลกหน้าโดยเฉพาะฝรั่ง คงต้องมาฝึกถามให้สุภาพมากขึ้น ดังนั้นจึงต้องมีการเกริ่นขึ้นก่อนที่เราจะถามนั่นเองค่ะ ซึ่งนักเรียนที่รักทุกคนได้เรียนรู้ในบทเรียนนี้นะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบการถามทิศทาง   โครงสร้างประโยคถามแบบตรงๆ (Direct Question) “

โจทย์ปัญหาแผนภูมิรูปวงกลม

ในบทความนี้เราจะได้เรียนรู้หลักการแก้โจทย์ปัญหาแผนภูมิรูปวงกลมที่จะนำไปใช้ได้ในชีวิตประจำวนและสามารถเข้าใจได้ง่าย

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล การเก็บรวบรวมข้อมูล เป็นขั้นตอนหนึ่งที่มีความสำคัญมากทางสถิติ เพื่อใช้ในการตัดสินใจได้อย่างถูกต้องและแม่นยำ โดยข้อมูลที่ได้มีหลากหลายรูปแบบ อาจจะเป็นตัวเลข ข้อความ หรือรูปภาพ ซึ่งเป็นข้อมูลที่ตอบสนองวัตถุประสงค์หรือเป็นเรื่องที่เราสนใจ โดยสามารถจำแนกข้อมูลได้ตามลักษณะและแหล่งที่มาของข้อมูล ได้แก่ จำแนกตามลักษณะของข้อมูล แบ่งได้เป็น 2 ประเภท คือ ข้อมูลเชิงปริมาณ (Quantitative Data) คือ ข้อมูลที่วัดค่าได้ แสดงเป็นตัวเลข ซึ่งสามารถนำมาใช้เปรียบเทียบกันได้โดยตรง เช่น จำนวนบุตรในครอบครัว,

เพลงชาติไทย สัญลักษณ์ของความรักชาติที่ถูกถ่ายทอดผ่านบทเพลง

‘ประเทศไทยรวมเลือดเนื้อชาติเชื้อไทย’ เชื่อว่าพอขึ้นต้นด้วยประโยคนี้ จะต้องมีน้อง ๆ หลายคนอ่านเป็นทำนองแล้วร้องต่อในใจแน่นอนว่า ‘เป็นประชารัฐ ไผทของไทยทุกส่วน’ เพราะนี่คือ เพลงชาติไทย ที่เราได้ยินตอนแปดโมงเช้ากับหกโมงเย็นของทุกวันนั่นเองค่ะ บทเรียนในวันนี้เราจะมาเจาะลึกถึงความเป็นมา และความหมายของเพลงชาติไทยกันค่ะ มาดูพร้อมกันเลย   ประวัติความเป็นมาของ เพลงชาติไทย     ก่อนที่จะมีเพลงชาติไทย ประเทศไทยใช้เพลงสรรเสริญพระบารมีที่เป็นเพลงประจำองค์พระมหากษัตริย์ เป็นเพลงประจำชาติ จนถึงการเปลี่ยนแปลงการปกครองเมื่อวันที่ 24 มิถุนายน พ.ศ.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1