สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สับเซต หรือ เซตย่อย

การที่เราจะบอกว่า เซต A เป็นสับเซต(subset)ของเซต B ได้นั้น สมาชิก “ทุกตัวของ A” จะต้องเป็นสมาชิกของ B ด้วย เขียนแทนด้วย A ⊂ B 

ตัวอย่างเช่น A = {1,3,5,7} , B = {1,2,3,4,5,6,7,8,9}

เราจะสังเกตเห็นว่า สมาชิกทุกตัวของ A เป็นสมาชิกของ B ดังนั้น A เป็นสับเซตของ B (A⊂B) แต่ B ไม่เป็นสับเซตของเซต A (B ⊄ A) เพราะ สมาชิกบางตัวของB ไม่อยู่ใน A 

เราอาจจะวาดรูปเพื่อให้เข้าใจมากขึ้น

จากรูป เราจะเห็นได้ชัดเลยว่า สมาชิกทุกตัวของเซต A อยู่ในเซต B แต่สมาชิกบางตัวของเซต B ไม่อยู่ในเซต A

และเรายังสามารถบอกได้อีกว่า Ø, {1}, {3}, {5}, {7} ⊂ A และ Ø, {1}, {2}, {3} {4}, {5}, {6}, {7}, {8}, {9}⊂ B

**ข้อควรรู้  เซตว่าง(Ø)เป็นสับเซตของทุกเซต**

สับเซตแท้และสับเซตไม่แท้

สับเซตแท้ : ให้ A และ B เป็นเซตที่ A ⊂ B ถ้าจำนวนสมาชิก(หรือขนาด)ของ A ไม่เท่ากับจำนวนสมาชิกของ B จะได้ว่า A เป็นสับเซตแท้ของเซต B 

สับเซตไม่แท้ : ให้ A และ B เป็นเซตที่ A ⊂ B ถ้าจำนวนสมาชิก(หรือขนาด)ของ A เท่ากับจำนวนสมาชิกของ B จะได้ว่า A ไม่เป็นสับเซตแท้ สามารถเขียนแทนด้วย A⊆B

“จำง่ายๆคือ สับเซตไม่แท้ เซตสองเซตจะเท่ากัน (A = B)”

เช่น



เพาเวอร์เซต(Power set)

ให้ A เป็นเซตใดๆ

พาวเวอร์เซต คือ เซตของสับเซตทั้งหมดของA  เพาเวอร์เซตของA เขียนแทนด้วย P(A) อ่านแล้วอาจจะงงๆ เราลองมาดูตัวอย่างเพื่อให้เข้าใจง่ายขึ้น

เช่น

1.) A = {1,2} สับเซตของเซต A ประกอบด้วย Ø, {1}, {2}, {1,2} จะเห็นว่าจำนวนสับเซตของเซต A = 4 = 2²

ดังนั้น เพาเวอร์เซตของเซต A คือ P(A) = {Ø, {1}, {2}, {1,2}}

2.) A = {1,2,3} จะได้ว่า P(B) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} จำนวนสมาชิกของ P(B) = 8 = 2³

เราจะสังเกตเห็นว่า เซต A มีจำนวนสมาชิกเท่ากับ 2  จำนวนสมาชิกของ P(A) = 2²  

เซต B มีจำนวนสมาชิกเท่ากับ 3 จำนวนสมาชิกของ P(B) = 2³ 

ดังนั้น ถ้า A มีจำนวนสมาชิกเท่ากับ a จะได้ว่า P(A) จะมีจำนวนสมาชิกเท่ากับ 2ª

 

ตัวอย่าง

 

1.)

2.)

3.) ให้ A = {x|x เป็นจำนวนเต็ม}

B = {y |0< y< 5 }

C = {z | z เป็นจำนวนเต็มคี่ที่มากกว่า3 แต่ น้อยกว่า9}

จากโจทย์สามารถบอกเกี่ยวกับสับเซตแท้ เพาเวอร์เซตได้อย่างไรบ้าง

วิธีทำ เราจะทำให้มันง่ายขึ้นโดยการวาดภาพ

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Direct Object

Direct and Indirect Objects

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Direct และ Indirect Objects กันครับว่าคืออะไร ถ้าพร้อมแล้วไปดูกันเลย

NokAcademy_ ม.5 M6 Gerund

Gerund พร้อมแนวข้อสอบ ม.6

  สวัสดีค่ะนักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” กันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า

เมทริกซ์

เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์ เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร ตัวอย่างการเขียนเมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก และจากเมทริกซ์ข้างต้นจะได้ว่า

มารยาทในการพูด

มารยาทในการพูดที่ดีมีอะไรบ้างที่เราควรรู้

บทนำ   สวัสดีน้อง ๆ ทุกคน กลับเข้ามาสู่เนื้อหาสาระดี ๆ อีกครั้ง โดยวันนี้จะเป็นเนื้อหาที่เกี่ยวกับมารยาทในการพูด และจะต่อจากเนื้อหาเมื่อครั้งที่แล้วอย่างเรื่องมารยาทในการฟัง ซึ่งถือเป็นบทเรียนที่มีประโยชน์มาก ๆ เมื่อเราต้องไปพูดต่อหน้าที่สาธารณะ หรือพูดคุยสนทนากับเพื่อน ๆ คุณครู พ่อแม่ของเรา เพื่อให้การสื่อสารมีประสิทธิภาพ เราก็ควรเรียนรู้มารยาทที่ดีในการพูดไปด้วย ถ้าน้อง ๆ ทุกคนพร้อมแล้วมาดูกันว่าวันนี้จะมีเนื้อหาอะไรมาฝากกันบ้าง     การพูด

การคูณเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้รวบรวมตัวอย่าง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการคูณของเลขยกกำลัง ทั้งสามสมบัติ ก่อนจะเรียนเรื่องการคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ให้น้องๆ ไปศึกษาเรื่อง การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สมบัติของการคูณเลขยกกำลัง  ถ้า a เป็นจำนวนใดๆ m และ n เป็นจำนวนเต็มบวก แล้ว  1)   am x an

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1