วงรี

วงรี

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

วงรี

วงรี จะประกอบไปด้วย

1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า

2) จุดยอด

3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก

4) ความเยื้องศูนย์กลาง (eccentricity)

วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
จุดยอด : (a, 0) และ (-a, 0)
แกนเอก : แกน X ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (c, 0) และ (-c, 0)
ความเยื้องศูนย์กลาง(eccentricity):  e=\frac{c}{a}

วงรี

จากกราฟ
สมการรูปแบบมาตรฐาน:    \frac{y^2}{a^2}+\frac{x^2}{b^2}=1
จุดยอด : (0, a) (0, -a)
แกนเอก : แกน Y ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (0, c) และ (0, -c)
ความเยื้องศูนย์กลาง(eccentricity): e=\frac{c}{a}

***ความเยื้องศูนย์กลางของวงรี คือ อัตราส่วนของ c ต่อ a เมื่อ c=\sqrt{a^2-b^2} ***

วงรี

วงรีที่มีจุดศูนย์กลางที่ (h, k)

วงรี

แกนเอกขนานแกน X

สมการรูปแบบมาตรฐาน:  \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1
จุดยอด : (h + a, k) และ (h – a, k)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h + c, k) และ (h – c, k)

แกนเอกขนานแกน Y

สมการรูปแบบมาตรฐาน : \frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1
จุดยอด : (h, k + a) (h, k – a)
แกนเอก : ยาว 2a
แกนโท : ยาว 2b
โฟกัส : (h, k + c) และ (h, k – c)

ตัวอย่าง

1. จงหาโฟกัสของวงรีที่มีสมการคือ

วงรี

2. วงรีรูปหนึ่ง มีจุดยอดอยู่ที่ (4,0) และ (-4,0) และโฟกัสอยู่ที่ (3,0) และ (-3,0) จงหาสมการของวงรี

วงรี

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_บอกเวลาเป็นภาษาอังกฤษ

เรียนรู้เกี่ยวกับการบอกเวลา

Hi guys! สวัสดีค่ะนักเรียนชั้น ม.1 ที่น่ารักทุกคน วันนี้เราจะไป เรียนรู้เกี่ยวกับการบอกเวลา กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลย Let’s go! การแบ่งประเภท     ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษา นะคะ  ดังตัวอย่างดังต่อไปนี้  

โคลงอิศปปกรณำ

โคลงอิศปปกรณำ วรรณคดีร้อยแก้วที่แปลมาจากนิทานตะวันตก

ในบทเรียนก่อนหน้า น้อง ๆ ได้เรียนรู้เรื่องโคลงโสฬสไตรยางค์กับโคลงนฤทุมนาการกันไปแล้ว แต่โคลงสุภาษิตที่น้อง ๆ ชั้นมัธยมศึกษาปีที่ 2 จะได้เรียนไม่ได้หมดแค่นั้นนะคะ เพราะยังมีอีกหนึ่งโคลงสุภาษิตที่สำคัญไม่แพ้กันเลยคือ โคลงอิศปปกรณำ นั่นเองค่ะ โคลงสุภาษิตที่ชื่อดูอ่านยากเรื่องนี้จะมีที่มาอย่างไร สอนเรื่องอะไรเราบ้าง มีเนื้อหาอย่างไร ให้ข้อคิดแบบไหน ไปเรียนรู้พร้อมกันเลยค่ะ   ความหมายของ โคลงอิศปปกรณำ     โคลงอิศปปกรณำ อ่านว่า โคลง-อิด-สะ-ปะ-ปะ-กะ-ระ-นำ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof  จากรูป

อิเหนา

อิเหนา จากนิทานปันหยีสู่วรรณคดีเลื่องชื่อของไทย

อิเหนา เป็นวรรณคดีที่ถูกเผยแพร่เข้ามาในไทยตั้งแต่สมัยกรุงศรีอยุธยา น้อง ๆ สงสัยไหมคะว่าจุดเริ่มต้นของนิทานของชาวชวานี้มีจุดเริ่มต้นในไทยอย่างไร เหตุใดถึงถูกประพันธ์ขึ้นเป็นบทละครให้ได้เล่นกันในราชสำนัก ถ้าน้อง ๆ พร้อมหาคำตอบแล้ว เราไปเรียนรู้ประวัติความเป็นมาและเรื่องย่อของอิเหนา ตอน ศึกกะหมังกุหนิงกันเลยค่ะ   ความเป็นมา   อิเหนามีความเป็นมาจากนิทานปันหยี หรือที่เรียกว่า อิเหนาปันหยีรัตปาตี ซึ่งเป็นนิทานที่เล่าแพร่หลายกันมากในชวา เชื่อกันว่าเป็นนิยายอิงประวัติศาสตร์ของชวา ในสมัยพุทธศตวรรษที่ 16 ปรุงแต่งมาจากพงศาวดารชวา อิทธิพลของเรื่องอิเหนาเข้ามาในประเทศไทยครั้งแรกในสมัยอยุธยา จากการที่เจ้าฟ้าหญิงกุณฑลและเจ้าฟ้าหญิงมงกุฎ

อนุกรมเลขคณิต

อนุกรมเลขคณิต

อนุกรมเลขคณิต อนุกรมเลขคณิต คือการนำลำดับเลขคณิตแต่ละพจน์มาบวกกัน โดย เขียนแทนด้วย จากบทความ “สัญลักษณ์การบวก” ซึ่งเป็นการลดรูปการเขียนจำนวนหลายจำนวนบวกกัน ในบทความนี้จะพูดถึงการบวกของลำดับเลขคณิต การหาผลบวก สูตรสำหรับการหาผลบวกเลขคณิต สูตรอนุกรมเลขคณิต สูตรของอนุกรมเลขคณิตมีอยู่ 2 สูตร ดังนี้ 1)   โดยที่ d คือ ผลต่างร่วม 2)   โดยจะใช้สูตรนี้ก็ต่อเมื่อรู้ค่า

NokAcademy_ม5 การใช้ Modal Auxiliaries

Modal Auxiliaries ที่สำคัญ

สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modal Auxiliaries หรือ Modal verbs “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า รู้จักกับ Modal Auxiliaries   Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1