ฟังก์ชันเพิ่มและฟังก์ชันลด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ

บทนิยาม

ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า

 f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) < f(x_2)

f เป็นฟังก์ชันลดบนเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) > f(x_2)

 

อธิบายนิยาม

f เป็นฟังก์ชันเพิ่ม เมื่อค่า x เพิ่มขึ้น ค่า y เพิ่มขึ้น

f เป็นฟังก์ชันลด เมื่อค่า x เพิ่มขึ้น แต่ค่า y ลดลง

เมื่อ เราหยิบ x ใดๆ มาสองตัว สมมติให้เป็น 1 และ 2 และสมมติให้ f(1) = 2 , f(2) = 4 จะเห็นว่า f(1) < f(2) เราจะสรุปว่า f เป็นฟังก์ชันเพิ่มบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

ถ้าสมมติให้ f(1) = 5 , f(2) = 3 จะเห็นว่า f(1) > f(2) เราจะสรุปว่า f เป็นฟังก์ชันลดบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

วิธีการตรวจสอบฟังก์ชันเพิ่มและฟังก์ชันลด

ตรวจสอบโดยใช้นิยาม

f(x) = 4x – 3

จะตรวจสอบว่า f เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R} โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

 

g(x) = -2x + 5

จะตรวจสอบว่า g เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}^+ (หรือ (0, ∞))

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R}^+ โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

สาเหตุที่ต้องคูณหรือบวกด้วยจำนวนจริงบางตัว เพราะว่าเราอยากได้รูปแบบของ f(x) และ g(x) เนื่องจากเราไม่สามารถเริ่มพิจารณาตั้งแต่สมการที่เต็มรูปแบบได้ เราจึงต้องค่อยๆเริ่มจากสิ่งที่เรามี นั่นก็คือ x_1x_2 แล้วค่อยบวกหรือคูณด้วยจำนวนจริงสักตัว เพื่อให้ได้รูปแบบของสมการตามที่โจทย์กำหนดมา

 

ตรวจสอบโดยพิจารณาจากกราฟ

f(x) = x² + 2x เป็นฟังก์ชันเพิ่มหรือลดบน (-∞, 0) และเป็นฟังก์ชันเพิ่มหรือลดบนช่วง (0, ∞)

จาก f(x) = x² + 2 เป็นกราฟของพาราโบลาหงายที่มีจุดวกกลับที่จุด (0, 2)

วาดกราฟได้ดังนี้

ฟังก์ชันเพิ่มและฟังก์ชันลด

จะเห็นว่าเมื่อเราแบ่งกราฟเป็นสองช่วง คือ (-∞, 0) และ (0, ∞)

พิจารณา (-∞, 0) จะเห็นว่า ค่าของ y นั้นลดลงในขณะที่ค่า x เพิ่มขึ้น ดังนั้น f เป็นฟังก์ชันลดบนช่วง (-∞, 0)

พิจารณา (0, ∞) จะเห็นว่าค่าของ y เพิ่มขึ้นและค่า x ก็เพิ่มขึ้นด้วย ดังนั้น f เป็นฟังก์ชันเพิ่มบนช่วง (0, ∞)

——————————————————————————————————————————————————————

พิจารณากราฟต่อไปนี้ แล้วบอกว่า f และ g เป็นฟังก์ชันเพิ่มช่วงไหน และเป็นฟังก์ชันลดช่วงไหน

ฟังก์ชันเพิ่มและฟังก์ชันลด

จากกราฟจะได้ว่า g(x)เป็นฟังก์ชั่นเพิ่มบนช่วง [-4, -2]  เพราะ เมื่อ x เพิ่มขึ้น ค่า y ก็เพิ่มขึ้นด้วย

และ f(x) เป็นฟังก์ชันลดบนช่วง [2, 4] เพราะเมื่อ x เพิ่มขึ้น ค่า y ลดลง

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การบรรยายลักษณะ และ ความรู้สึก โดยใช้คำคุณศัพท์

การบรรยายลักษณะและความรู้สึก โดยใช้คำคุณศัพท์ Adjective

ทบทวนความหมายและหน้าที่ของคำคุณศัพท์   คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่ นั่นเองค่า นอกจากนี้ยังทำหน้าที่ขยายในที่นี้เพื่อบอกให้รู้ว่าคำนามหรือสรรพนามเหล่านั้นมีลักษณะยังไง  และในบทนี้ครูจะพาไปดูการใช้คำคุณศัพท์บอกลักษณะและความรู้สึก (Descriptive Adjective) กันนะคะ ไปลุยกันเลย   การใช้คำคุณศัพท์ (Adjective)

สมบัติการคูณจำนวนจริง

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

เรียนรู้การเขียนเชิงวิชาการ อย่างง่ายเพียง 4 ขั้นตอน

การเขียนเชิงวิชาการ อาจจะดูเป็นการเขียนที่ยากในความคิดของหลาย ๆ คน เพราะดันมีคำว่า วิชาการ อยู่ด้วยนั่นเอง แต่น้อง ๆ ทราบไหมคะว่าที่จริงแล้วการเขียนเชิงวิชาการนั้นไม่ได้ยุ่งยากและซับซ้อนเลย แถมยังมีวิธีขั้นตอนการเขียนที่ง่าย ๆ เพียงไม่กี่ขั้นตอนเท่านั้น ถ้าน้อง ๆ อยากรู้แล้วว่ามันจะง่ายขนาดนั้นจริงหรือ? เราไปหาคำตอบของเรื่องนี้พร้อมกันเลยค่ะ   การเขียนเชิงวิชาการ คืออะไร?   คือ องค์ความรู้เชิงวิชาการที่ได้จากการตกผลึกทางความคิดของผู้เขียนที่ต้องการถ่ายทอดหรือสื่อสารให้ผู้อื่นได้รับรู้ผ่านกระบวนการเรียบเรียง โดยอาศัยการศึกษาค้นคว้า สำรวจ

nokAcademy Profile_Asking and telling time by

การบอกเวลาในภาษาอังกฤษ (Telling time in English)

Hi guys! สวัสดีค่ะนักเรียนชั้นม. 1 ที่น่ารักทุกคน วันนี้เราจะไปดูวีการ “บอกเวลาในภาษาอังกฤษ หรือ Telling time in English กันค่ะ” ไปลุยกันเลย   บทนำ   ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษานะคะ 

Profile-Have has got P.5

ทบทวนการใช้ ” Have/has got “

สวัสดีค่ะนักเรียนป. 5 ที่น่ารักทุกคน วันนี้เราจะไปทบทวนการใช้  Have/has got ในภาษาอังกฤษกันค่ะ ซึ่งก่อนอื่นต้อง มาทำความรู้จักกับ Verb to have กันก่อนซึ่ง เจ้า Verb to have ที่เราอาจจะคุ้นหูบ่อยๆ เช่น  Have a wonderful day. ขอให้มีวันที่ดีนะ เมื่อเราต้องการจบบทสนทนา

ที่มาและเรื่องย่อของ มหาชาติชาดก กัณฑ์มัทรี

มหาชาติชาดก หรือมหาเวสสันดรชาดก เป็นชาดกที่ได้ชื่อว่าเป็น มหาชาติ เพราะเป็นชาติสุดท้ายก่อนจะมาจุติเป็นพระพุทธเจ้า จากบทเรียนที่เคยเรียนรู้กันตอน ม.4 น้อง ๆ คงจะทราบกันดีอยู่แล้วว่ามหาชาตินี้มีด้วยกันทั้งหมด 13 กัณฑ์ โดยเรื่องที่เราจะได้เรียนกันเจาะลึกกันไปอีกในวันนี้ คือ กัณฑ์มัทรี นั่นเองค่ะ ถ้าน้อง ๆ อยากรู้แล้วว่าเป็นอย่างไร ก็ไปเรียนรู้พร้อมกันเลยค่ะ   ความเป็นมา     มหาชาติชาดกเป็นเรื่องราวในอดีตกาลของพระพุทธเจ้าที่เล่าให้กับเหล่าประยูรญาติฟังเมื่อครั้งเสด็จกลับเมืองและได้แสดงอภินิหาร

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1