ฟังก์ชันเพิ่มและฟังก์ชันลด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ

บทนิยาม

ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า

 f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) < f(x_2)

f เป็นฟังก์ชันลดบนเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) > f(x_2)

 

อธิบายนิยาม

f เป็นฟังก์ชันเพิ่ม เมื่อค่า x เพิ่มขึ้น ค่า y เพิ่มขึ้น

f เป็นฟังก์ชันลด เมื่อค่า x เพิ่มขึ้น แต่ค่า y ลดลง

เมื่อ เราหยิบ x ใดๆ มาสองตัว สมมติให้เป็น 1 และ 2 และสมมติให้ f(1) = 2 , f(2) = 4 จะเห็นว่า f(1) < f(2) เราจะสรุปว่า f เป็นฟังก์ชันเพิ่มบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

ถ้าสมมติให้ f(1) = 5 , f(2) = 3 จะเห็นว่า f(1) > f(2) เราจะสรุปว่า f เป็นฟังก์ชันลดบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

วิธีการตรวจสอบฟังก์ชันเพิ่มและฟังก์ชันลด

ตรวจสอบโดยใช้นิยาม

f(x) = 4x – 3

จะตรวจสอบว่า f เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R} โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

 

g(x) = -2x + 5

จะตรวจสอบว่า g เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}^+ (หรือ (0, ∞))

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R}^+ โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

สาเหตุที่ต้องคูณหรือบวกด้วยจำนวนจริงบางตัว เพราะว่าเราอยากได้รูปแบบของ f(x) และ g(x) เนื่องจากเราไม่สามารถเริ่มพิจารณาตั้งแต่สมการที่เต็มรูปแบบได้ เราจึงต้องค่อยๆเริ่มจากสิ่งที่เรามี นั่นก็คือ x_1x_2 แล้วค่อยบวกหรือคูณด้วยจำนวนจริงสักตัว เพื่อให้ได้รูปแบบของสมการตามที่โจทย์กำหนดมา

 

ตรวจสอบโดยพิจารณาจากกราฟ

f(x) = x² + 2x เป็นฟังก์ชันเพิ่มหรือลดบน (-∞, 0) และเป็นฟังก์ชันเพิ่มหรือลดบนช่วง (0, ∞)

จาก f(x) = x² + 2 เป็นกราฟของพาราโบลาหงายที่มีจุดวกกลับที่จุด (0, 2)

วาดกราฟได้ดังนี้

ฟังก์ชันเพิ่มและฟังก์ชันลด

จะเห็นว่าเมื่อเราแบ่งกราฟเป็นสองช่วง คือ (-∞, 0) และ (0, ∞)

พิจารณา (-∞, 0) จะเห็นว่า ค่าของ y นั้นลดลงในขณะที่ค่า x เพิ่มขึ้น ดังนั้น f เป็นฟังก์ชันลดบนช่วง (-∞, 0)

พิจารณา (0, ∞) จะเห็นว่าค่าของ y เพิ่มขึ้นและค่า x ก็เพิ่มขึ้นด้วย ดังนั้น f เป็นฟังก์ชันเพิ่มบนช่วง (0, ∞)

——————————————————————————————————————————————————————

พิจารณากราฟต่อไปนี้ แล้วบอกว่า f และ g เป็นฟังก์ชันเพิ่มช่วงไหน และเป็นฟังก์ชันลดช่วงไหน

ฟังก์ชันเพิ่มและฟังก์ชันลด

จากกราฟจะได้ว่า g(x)เป็นฟังก์ชั่นเพิ่มบนช่วง [-4, -2]  เพราะ เมื่อ x เพิ่มขึ้น ค่า y ก็เพิ่มขึ้นด้วย

และ f(x) เป็นฟังก์ชันลดบนช่วง [2, 4] เพราะเมื่อ x เพิ่มขึ้น ค่า y ลดลง

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้คุณค่าและนำสุภาษิตสอนหญิงไปใช้ในชีวิตประจำวัน

สุภาษิตสอนหญิง เป็นผลงานที่สุนทรภู่มุ่งสอนและเตือนสติผู้หญิงไทยให้มีกิริยามารยาทและการดำเนินชีวิตตามแบบแผนของสังคมไทยทั้งการพูด การเดิน การคบเพื่อน การวางตัว และความกตัญญู ซึ่งเป็นค่านิยมของคนในอดีตที่ยังคงสืบสานเจตนารมณ์มาจนถึงปัจจุบัน บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้ถึงคุณค่าและการนำไปประยุกต์ใช้ในชีวิตประจำวันกันค่ะ   ความสำคัญและคำสอนในเรื่อง สุภาษิตสอนหญิง   เป็นวรรณคดีคำสอนที่ช่วยเตือนสติหญิงไทยให้ประพฤติตัวอยู่ในประเพณีอันดีงามของไทยตั้งแต่เริ่มโตเป็นสาวไปจนถึงวัยที่แต่งงานมีครอบครัว ดังนี้   สาววัยแรกรุ่น : ควรวางตัวให้สมฐานะ ทั้งการแต่งกายและกิริยามารยาท     หมายถึง สาวแรกรุ่นเปรียบเหมือนมณี

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น ระบบสมการเชิงเส้น คือระบบสมการที่มีดีกรีเป็นหนึ่ง ซึ่งก็คือเลขชี้กำลังของตัวแปรเป็นหนึ่งนั่นเอง ซึ่งในตอนมัธยมต้นน้องๆได้เรียนระบบสมการเชิงเส้น 2 ตัวแปรไปแล้ว ระบบสมการเชิงเส้นสองตัวแปร เช่น แล้วเราก็แก้สมการหาค่า x, y  (ซึ่งอาจจะมีคำตอบหรือไม่มีก็ได้) แต่ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับระบบสมการเชิงเส้น n ตัวแปร นั่นก็คือน้องๆจะต้องหาคำตอบของตัวแปร n ตัวตัว ซึ่งการหาคำตอบนั้นมีหลายวิธีไม่ว่าจะเป็นการใช้เมทริกซ์ (ซึ่งน้องๆจะได้เรียนในบทความถัดๆไป) หรือการแก้สมการธรรมดาและในข้อสอบส่วนใหญ่จะเน้นให้น้องๆหาคำตอบในระบบสมการเชิงเส้นที่ไม่เกิน 3 ตัวแปร เพราะถ้าเกินกว่านั้นอาจจะใช้เวลาในการหาคำตอบมาก

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง คือ การนำเสนอข้อมูลที่ได้มีการเก็บรวบรวมข้อมูลไว้โดยใช้รูปสี่เหลี่ยมมุมฉาก ซึ่งเเต่ละรูปมีความกว้างเท่ากัน เเละใช้ความสูงหรือความยาวเเสดงปริมาณของข้อมูล เเต่จุดเริ่มต้นจะต้องเริ่มในระดับเดียวกันเสมอ อาจอยู่ในเเนวตั้งหรือเเนวนอนก็ได้ การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่งเปรียบเทียบ คือ การนำเสนอข้อมูลโดยเปรียบเทียบข้อมูลตั้งเเต่ 2 ชุดขึ้นไปในแผนภูมิเดียวกัน โดยมีเเท่งสี่เหลี่ยมที่เเสดงข้อมูลชนิดเดียวกันอยู่ด้วยกันเป็นชุดๆ เเละมีสีหรือเเรเงาในเเท่งสี่เหลี่ยมต่างกัน เเละระบุไว้บนเเผนภูมิด้วยว่าสีหรือเเรเงานั้น ๆ เป็นข้อมูลของอะไร ตัวอย่างของแผนภูมิเเท่งเปรียบเทียบ ส่วนประกอบของเเผนภูมิแท่ง: 1. ชื่อแผนภูมิ 2. จำนวน 3.

ศึกษาที่มาของ ขัตติยพันธกรณี บทประพันธ์ที่มาจากเรื่องจริงในอดีต

ขัตติยพันธกรณี เป็นพระราชนิพนธ์ในรัชกาลที่ 5 มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ น้อง ๆ สงสัยกันไหมคะว่าเกี่ยวกับเรื่องไหน เหตุใดพระองค์จึงต้องพระราชนิพนธ์วรรณคดีเรื่องนี้ขึ้นมา เราไปหาคำตอบถึงที่มา ความสำคัญ และเนื้อเรื่องกันเลยค่ะ รับรองว่านอกจากจะได้ความรู้เกี่ยวกับบทประพันธ์แล้ว บทเรียนในวันนี้ยังมีเกร็ดความรู้ทางประวัติศาสตร์ให้น้อง ๆ อีกด้วยค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ที่มาของ ขัตติยพันธกรณี     ขัตติยพันธกรณีมีความหมายถึงเหตุอันเป็นข้อผูกพันของกษัตริย์ เป็นพระราชหัตถเลขาของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวและตอบกลับโดยสมเด็จกรมพระยาดำรงราชานุภาพ มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ ช่วง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1