ฟังก์ชันลอการิทึม

สารบัญ

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ y=a^{x} ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ x=a^{y} จัดรูปใหม่ ได้เป็น ฟังก์ชันลอการิทึม (อ่านว่าล็อก x ฐาน a)

 

บทนิยาม

logarithm คือฟังก์ชันที่อยู่ในรูป {(x, y) ∈ \mathbb{R}^+\times \mathbb{R} : ฟังก์ชันลอการิทึม} โดยที่ a เป็นจำนวนจริงที่มากกว่า 0 และ a ≠ 1

 

ตัวอย่าง 

x = 5^{y} จัดรูปเป็น ฟังก์ชันลอการิทึม อ่านว่า ล็อก x ฐาน 5

 

กราฟ

กรณี a > 1

ฟังก์ชันลอการิทึม

กรณี 0 < a < 1

ฟังก์ชันลอการิทึม

 

จากกราฟจะเห็นว่า

1.) เมื่อ a > 1 จะเป็นฟังก์ชันเพิ่ม

2.) เมื่อ 0 < a < 1 จะเป็นฟังก์ชันลด

3.) กราฟของทั้ง 2 กรณีจะไม่ตัดแกน y

4.) ค่า x จะเป็นบวกเสมอ แต่ค่า y เป็นได้ทั้งบวกและลบ

 

สมบัติ ฟังก์ชันลอการิทึม

ให้ a, M และ N เป็นจำนวนจริงบวกที่ a ≠ 1 และ k เป็นจำนวนจริง จะได้ว่า

1.) ฟังก์ชันลอการิทึม

(ล็อกผลคูณเท่ากับผลบวกของล็อก)

2.) ฟังก์ชันลอการิทึม

(ล็อกผลหารเท่ากับผลต่างของล็อก)

3.) ฟังก์ชันลอการิทึม

เช่น   log_{2}x^3=3log_{2}x

4.) log_{a}a=1

5.) ฟังก์ชันลอการิทึม

(ล็อก 1 เท่ากับ 0)

6.) ฟังก์ชันลอการิทึม  เมื่อ k ≠ 0

เช่น  log_{2^5}x=\frac{1}{5}log_{2}x

7.) log_{a}b=\frac{1}{log_{b}a}  เมื่อ b >0 และ b ≠ 1

เช่น  ฟังก์ชันลอการิทึม

8.) ฟังก์ชันลอการิทึม  เมื่อ N ≠ 1

เช่น   ฟังก์ชันลอการิทึม   (เลขฐานไม่จำเป็นต้องเป็นเลข 2 เป็นเลขอะไรก็ได้ที่มากกว่า 0 และไม่เท่ากับ 1 )

การหาค่าลอการึทึม

ลอการิทึมที่ใช้มากและค่อนข้างนิยมใช้ในการคำนวณ คือ ลอการิทึมสามัญ (common logarithm) ซึ่งก็คือลอการิทึมที่มีเลขฐานสิบ และโดยทั่วไปเราจะเขียนล็อกโดยไม่มีฐานกำกับ

เช่น log_{10}x= log (x)

จากสมบัติข้อที่ 3 และ 4 จะได้ว่า

log10 = 1

log100=log10^{2}=2log10=2(1)=2

log0.01=log\frac{1}{100}=log10^{-2}=-2log(10)=-2

ดังนั้น จะได้ว่า log10^n=nlog10=n  เมื่อ n เป็นจำนวนเต็มใดๆ

ดังนั้น ถ้า N เป็นจำนวนเต็มบวกใดๆ เราสามารถเขียนอยู่ในรูป N_0\times 10^n ได้เสมอ โดยที่ 0 ≤ N < 10

เช่น 3,400=3.4\times10^3 , 0.0029 = 2.9 \times 10^{-3}

 

ทีนี้เรามาพิจารณา

N=N_0\times 10^n เมื่อ 0 ≤ N < 10

จะได้ว่า

ฟังก์ชันลอการิทึม

 

เราจะเรียก logN_0  ว่า แมนทิสซาของ logN

และเรียก n ว่า แคแรกเทอริสติกของ  logN

 

บทนิยาม

  1. ถ้า log N = A จะเรียก N ว่า แอนติลอการิทึมของ log N
  2. ถ้า log N = A จะได้ว่า N = antilog A

 

ตัวอย่าง

ให้หาค่าแคแรกเทอริสติกของ log 56.2

ฟังก์ชันลอการิทึม

 

ลอการิทึมที่นิยมใช้และมีประโยชน์มากเมื่อเรียนคณิตศาสตร์ขั้นที่สูงขึ้น คือ ลอการิทึมฐาน e โดยที่ e คือสัญลักษณ์ค่าคงที่ ซึ่ง e ≈ 2.7182818 ซึ่งล็อกฐาน e เราจะเรียกอีกอย่างว่า ลอการิทึมธรรมชาติ มักจะเขียนอยู่ในรูป ln x (อ่านว่าล็อก x ฐาน e)

การเปลี่ยนฐานของลอการิทึม

ตัวอย่างการเปลี่ยนฐานของลอการิทึม

กำหนดให้ log_65=0.8982 จงหาค่า log_{36}5

 

น้องๆสามารถเข้าไปอ่านบทความ ฟังก์ชันเอกซ์โพเนนเชียล เพื่อจะได้เข้าใจกับฟังก์ชันลอการิทึมง่ายขึ้น

 

 

 

 

 

+5
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook
สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก

สัญลักษณ์แทนการบวก สัญลักษณ์แทนการบวก หรือ   เรียกว่า ซิกมา ( Sigma ) เราใช้เพื่อลดรูปการบวกกันของตัวเลข เนื่องจากว่าบางทีเป็นการบวกของจำนวนตัวเลข 100 พจน์ ถ้ามานั่งเขียนทีละตัวก็คงจะเยอะไป เราจึงจะใช้เครื่องหมายซิกมามาใช้เพื่อประหยัดเวลาในการเขียนนั่นเอง เช่น 1 + 2 + 3 + 4 +5  สามารถเขียนแทนด้วย

Three-word Phrasal Verbs

Three-word Phrasal verbs

Hi guys! สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคนวันนี้ครูมีกริยาวลีที่ใช้บ่อยแบบ 3 คำ หรือ Three-word Phrasal Verbs มาฝากกันจ้า ด้านล่างเลยน๊า ขอให้ท่องศัพท์ให้สนุกจ้า ตารางคำศัพท์Three-word Phrasal Verbs ต้องรู้   ask somebody out ชวนออกเดท/ชวนออกไปข้างนอก add up to something ทำให้สมน้ำสมเนื้อ/ทำให้เท่ากัน back something up

การลบเศษส่วนและจำนวนคละ

ลบไม่ได้ช่วยให้ลืม เช่นเดียวกับการลบเศษส่วนและจำนวนคละ!

บทความที่แล้วเราได้กล่าวถึงการบวกเศษส่วนและจำนวนคละไปแล้ว บทต่อมาก็จะเป็นเรื่องของการลบเศษส่วนและจำนวนคละ ทั้งสองเรื่องนี้มีหลักการคล้ายกันต่างกันที่เครื่องหมายที่บ่งบอกว่าโจทย์ต้องการทราบอะไร ดังนั้นบทความนี้จะอธิบายถึงหลักการลบเศษส่วนและจำนวนคละอย่างละเอียดและยกตัวอย่างให้น้อง ๆเข้าใจอย่างเห็นภาพและสามารถนำไปปรับใช้กับแบบฝึกหัดเรื่องการลบเศษส่วนและจำนวนคละได้

พญาช้างผู้เสียสละ

ทำความรู้จักกับพญาช้างผู้เสียสละนิทานธรรมะจรรโลงใจ

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคน กลับมาพบกันอีกครั้งในวิชาภาษาไทยแสนสนุก ซึ่งวันนี้เราจะพาทุกคนมาเปลี่ยนบรรยากาศกันด้วยการมาอ่านนิทานชาดกเรื่อง พญาช้างผู้เสียสละ เป็นเรื่องราวของพระพุทธเจ้าเมื่อครั้งที่ได้ลงมาเกิดเป็นพญาช้างรูปร่างงดงาม ต้องบอกว่าเรื่องราวในนิทานชาดกเรื่องนี้นอกจากจะทำให้น้อง ๆ สนุกไปกับเนื้อเรื่องแล้วก็ยังมอบคติสอนใจให้กับน้อง ๆ ได้ไม่น้อยเลย เพราะฉะนั้นถ้าทุกคนพร้อมแล้วไปเข้าสู่บทเรียนกันเลย ภูมิหลังตัวละคร สำหรับเรื่อง พญาช้างผู้เสียสละ อย่างที่ได้บอกไปว่าเป็นนิทานชาดกที่จัดเป็น 1 ใน 500 ชาติที่พระพุทธเจ้าเคยได้เสวยชาติ ซึ่งชาดกเรื่องนี้จะเล่าถึงพระพุทธเจ้าเมื่อครั้งที่ได้ลงมาเกิดเป็นพญาช้างสีลวะ ด้วยความที่พระองค์ทรงบำเพ็ญทานบารมีมานานจึงได้เกิดเป็นพญาช้างร่างใหญ่กำยำผิวขาวเผือกผ่อง มีงวงและงาสวยงามและมีบริวารรายล้อม

Direct Object

Direct and Indirect Objects

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Direct และ Indirect Objects กันครับว่าคืออะไร ถ้าพร้อมแล้วไปดูกันเลย

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้