ฟังก์ชันผกผัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย f^{-1} เมื่อ f เป็นฟังก์ชัน

จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป

เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ

ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

พิจารณาตัวผกผันของ f เท่ากับ {(2, 1), (2, 3), (5, 4), (5, 6)}  จากนิยามของฟังก์ชัน ถ้าตัวหน้าเท่ากันแล้วตัวหลังจะต้องเท่ากัน ทำให้ได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างตัวผกผันของฟังก์ชัน

หาฟังก์ชันผกผันของ  เมื่อ

1.) f(x) = \frac{1}{x-2}

ให้ f(x) = y

ขั้นตอนที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x=\frac{1}{y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้  ฟังก์ชันผกผัน

ดังนั้น  = \frac{1}{x}+2  เมื่อ x ≠ 0 (เพราะถ้า x =0จะหาค่าไม่ได้)

2.) f(x) = \sqrt{x+3}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \sqrt{y+3}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ 

ดังนั้น f^{-1}(x) = x^2-3

 

3.) f(x) = \frac{2x-3}{3x-2}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \frac{2y-3}{3y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ ฟังก์ชันผกผัน

ดังนั้น f^{-1}(x) = \frac{2x-3}{3x-2}  เมื่อ x ≠  \frac{2}{3}

 

ให้ f(x) = 3x + 5 จงหา

4.) f^{-1}(3)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย 3

จะได้  f^{-1}(3) = \frac{5-3}{3}=\frac{2}{3}

 

5.) f^{-1}(-1)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย -1

จะได้  f^{-1}(-1) = \frac{5-(-1)}{3}=\frac{5+1}{3}=\frac{6}{3}=2

 

การตรวจสอบว่าตัวผกผันของ f เป็นฟังก์ชันหรือไม่

การตรวจสอบทำได้ 2 วิธี คือ

  1. หาตัวผกผันมาก่อนแล้วเช็คว่าตัวผกผันนั้นเป็นฟังก์ชันหรือไม่
  2. หาจากทฤษฎีบทต่อไปนี้

ตัวผกผันของ f เป็นฟังก์ชัน ก็ต่อเมื่อ f เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ขยายความทฤษฎีบท

ฟังก์ชันผกผันเรามีข้อความอยู่สองข้อความ ที่มีตัวเชื่อม ก็ต่อเมื่อขั้นกลางอยู่

ถ้าเรารู้ว่าฝั่งใดฝั่งหนึ่งจริง เราสามารถสรุปข้อความอีกฝั่งหนึ่งได้เลย

เช่น ถ้าเรารู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน เราก็จะรู้ด้วยว่า f เป็นฟังก์ชัน

ในขณะเดียวกัน ถ้าเรารู้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราก็จะรู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน

 

แต่ ถ้าเรารู้ว่าข้อความฝั่งหนึ่งไม่จริง เราก็สามารถสรุปได้เช่นกันว่า ข้อความอีกฝั่งก็ไม่จริง

เช่น เรารู้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน เราสามารถสรุปได้เลยว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ถ้าเรารู้ว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราสามารถสรุปได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างการตรวจสอบ ฟังก์ชันผกผัน

 

ให้ f เป็นฟังก์ชัน ที่ f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

วิธีทำ 1 จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะได้ว่า f^{-1}  = {(y, x ) : y, x ∈ \mathbb{R} และ y = 2x + 3}

หรือเขียนได้อีกแบบคือ f^{-1} = {(x, y) : x, y ∈ \mathbb{R} และ x = 2y + 3}  << ตรงสมการ เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะตรวจสอบว่า f^{-1} เป็นฟังก์ชันหรือไม่ โดยสมมติคู่อันดับมาสองคู่ ให้เป็น (x_1, y_1),(x_1,y_2) ซึ่งทั้งสองคู่อันดับนี้ เป็นคู่อันดับใน f^{-1}

ดังนั้นเราสามารถแทน คู่อันดับทั้งสองไปในสมการ x = 2y + 3 ได้

ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันจะได้ว่า f^{-1} เป็นฟังก์ชันเพราะ เมื่อสมาชิกตัวหน้าของคู่อันดับเหมือนกันสมาชิกตัวหลังก็เหมือนกันด้วย

วิธีที่ 2  จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะตรวจสอบว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่เพื่อนำมาสรุปการเป็นฟังก์ชันของf^{-1} 

สมมติให้ (x_1,y_1),(x_2,y_1) เป็นคู่อันดับใน f 

ดังนั้นเราสามารถแทนคู่อันดับทั้งสองคู่อันดับในสมการ y = 2x + 3 ได้

ได้เป็น ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันหนึ่งต่อหนึ่ง จะได้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพราะเมื่อเราให้สมาชิกตัวหลังเท่ากันแล้วเราได้ว่าสมาชิกตัวหน้าก็เท่ากัน

และ จาก f เป็นฟังก์ชันหนึ่งต่อหนึ่งเลยทำให้สรุปได้ว่า f^{-1} เป็นฟังก์ชัน

 

จากวิธีทั้งสองวิธี น้องๆสามารถเลือกวิธีตรวจสอบที่ตัวเองถนัดได้เลย ได้คำตอบเหมือนกันจ้า

 

เนื้อหาที่ควรรู้เพื่อง่ายต่อการทำความเข้าใจ

 

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การตั้งคําถามทางสถิติ

การตั้งคําถามทางสถิติ บทความนี้ได้รวบรวมความรู้เรื่อง การตั้งคําถามทางสถิติ ไว้อย่างละเอียด ก่อนอื่นน้องมาทำความเข้าใจกับความหมายของ “คำถามทางสถิติ” คำถามทางสถิติ  หมายถึง คำถามที่มีคำตอบหรือคาดว่าจะได้รับคำตอบมากกว่า 1 คำตอบ รวมถึงคำถามที่ต้องการคำตอบซึ่งได้มาจากการรวบรวมข้อมูลพื้นฐานบางอย่างแล้วนำมาจำแนก  คำนวณ หรือวิเคราะห์เพื่อใช้ตอบคำถามนั้น คำถามทางสถิติจะต้องประกอบด้วยองค์ประกอบสำคัญ 3 ส่วน ได้แก่ ระบุสิ่งที่ต้องการศึกษาได้ มีกลุ่มบุคคลหรือสิ่งที่จะเก็บรวบรวมข้อมูลที่หลากหลาย สามารถคาดการณ์ได้ว่าคำตอบที่จะเกิดขึ้นมีความแตกต่างกัน ตัวอย่างคำถามทางสถิติ คำถามต่อไปนี้เป็นคำถามทางสถิติ อัตราส่วนที่เหมาะสมในการผสมสีทาบ้าน แต่ยี่ห้อควรเป็นอย่างไร

คำไทยที่มักอ่านผิด มีคำใดบ้างที่เราควรรู้?

การอ่านผิด เป็นปัญหาในการอ่านออกเสียง มีสาเหตุมาจากอ่านไม่ออก หรือ อ่านผิด หลายคนอาจมองว่าไม่สำคัญ แต่รู้หรือไม่คะ ว่าการอ่านนั้นมีความสำคัญอย่างมาก โดยเฉพาะหากเราอ่านผิด ก็จะทำให้ความหมายของคำนั้นผิดเพี้ยนไป หรือกลายเป็นคำที่ไม่มีความหมายไปเลยก็ได้ บทเรียน คำไทยที่มักอ่านผิด ในวันนี้ เราจะพาน้อง ๆ ไปเรียนรู้การอ่านสะกดคำที่ถูกต้อง กับคำในภาษาไทยที่คนส่วนใหญ่มักอ่านผิดกันบ่อย ๆ จะมีคำใดบ้าง ไปเรียนรู้พร้อมกันเลยค่ะ   คำไทยที่มักอ่านผิด   ลักษณะของการอ่านผิดมีดังนี้

Compound sentences Profile

ประโยคความรวม (Compound Sentence)

  สวัสดีค่ะนักเรียนชั้นม.2 ที่น่ารักทุกคน เจอกันอีกแล้วจร้ากับไวยากรณ์การเขียนภาษาอังกฤษและวันนี้ครูจะพาไปดูเทคนิคการการใช้ประโยคความรวมในภาษาอังกฤษกันค่ะ ซึ่งเป็นไม้เบื่อไม้เมามากกับคนที่ไม่ชอบเขียน  ครูเอาใจช่วยทุกคนค่า ไปลุยกันเลย     ประโยคความรวม (Compound Sentence)   ประโยคความรวม ภาษาอังกฤษคือ Compound Sentence อ่านว่า เคิมพาวดฺ เซนเท่นสฺ เป็นประโยคที่ประกอบด้วยประโยคความเดียวอย่างน้อย 2 ประโยคโดยมีคำเชื่อมระหว่างประโยค เช่น for,

บทละครพูดเรื่องเห็นแก่ลูก

ศึกษาตัวบทและคุณค่าที่อยู่ใน บทละครพูดเรื่องเห็นแก่ลูก

บทละครพูดเรื่องเห็นแก่ลูก เป็นบทละครพูดเรื่องแรกของไทยที่พระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัวเป็นผู้ประพันธ์ โดยมุ่งหวังให้ละครเป็นตัวช่วยกล่อมเกลาจิตใจประชาชน แต่นอกจากตัวบทจะมีความโดดเด่นจนได้รับความนิยมอย่างมากแล้ว ยังแฝงแนวคิดมากมายไว้ในเรื่อง จะเป็นอย่างไรบ้างนั้น ไปเรียนรู้เรื่องพร้อม ๆ กันเลยค่ะ   ตัวบทเด่น ๆ ใน บทละครพูดเรื่องเห็นแก่ลูก     ตัวบทที่ 1    พระยาภักดี : ใครวะ อ้ายคำ : อ้างว่าเป็นเกลอเก่าของใต้เท้า

Preposition & Gerund เรื่องเล็กๆ ที่เจอบ๊อยบ่อย

สวัสดีน้องๆ ม. ปลายทุกคนโดยเฉพาะน้องๆ ม. 6 รุ่นโควิดนะครับ วันนี้เรามาทบทวนไวยากรณ์จุดเล็กๆ แต่สำคัญเอาเรื่องอยู่เหมือนกัน นั่นก็คือการใช้ Gerund ตามหลัง Preposition นั่นเอง ว่าแล้วก็เริ่มกันเลยดีกว่าครับ!

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1