ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น

จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม

เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน

แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง ขอบเขตมันเลยแคบลง

เช่น A ={1, 2, 3, 5}  B = {s, t, u}

ฟังก์ชันจาก A ไป B คือ {(1, s), (2, u), (2, t), (5, s)} จะเห็นว่าฟังกก์ชันถูกสร้างขอบเขตให้เลือกแค่สมาชิกจากในเซต 2 เซตนี้เท่านั้น ไม่สามารถหยิบสมาชิกจากเซตอื่นๆมาได้

ฟังก์ชันจาก A ไป B

f เป็นฟังก์ชันจาก A ไป B คือการส่งสมาชิกจากเซต A ไปยังเซต B โดย สมาชิกในเซต A จะถูกส่งตัวละครั้ง ไปยังเซต B ซึ่งไม่จำเป็นที่เซต B จะถูกใช้จนหมด นั่นก็คือเรนจ์ของฟังก์ชันเป็นสับเซตของ B เขียนแทนด้วย f : A → B

เช่น ให้ A = {2, 4, 6} และ B ={a, b, c}

ฟังก์ชันจาก A ไป B สามารถเขียนได้ดังนี้

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจาก B ไป A

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

** ฟังก์ชันคู่อันดับข้างต้นเป็นเพียงตัวอย่างเพื่อให้รู้ว่าการส่งฟังก์ชันจากเซตไปอีกเซตเป็นแบบไหน คู่อันดับอาจจะเป็นคู่อื่นนอกเหนือจากที่ยกตัวอย่างมา แต่! ต้องอย่าลืมว่า “ตัวหน้าต้องต่างกัน และต้องมาจากเซตที่กำหนดให้เท่านั้น” นะคะ**

 

ฟังก์ชันจาก A ไปทั่วถึง B

ฟังก์ชันจาก A ไปทั่วถึง B เป็นการส่งสมาชิกจากเซต A ไปยังสมาชิกใน B ครบทุกตัว ดังนั้นจะได้ว่า เรนจ์ของฟังก์ชันคือ เซต B เขียนแทนด้วย

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

Keyword คือ ทั่วถึง : แปลง่ายๆว่า A ไปยัง B อย่างทั่วถึง แสดงว่าสมาชิกใน B ต้องโดนจับคู่ทุกตัว

ตัวอย่างเช่น

ให้ A = {2, 4, 6, 7} และ B ={a, b, c}

 

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B เป็นการส่งสมาชิกจากเซต A ไปยังสมาชิก B โดยที่สมาชิกใน B 1 ตัว จะคู่กับ สมาชิกใน A เพียงหนึ่งตัวเท่านั้น

เขียนแทนด้วย  ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

Keyword ก็คือ 1 ต่อ 1 : เหมือนกับเราจับคู่กับเพื่อน ตัวเรา 1 คน ก็ต้องคู่กับเพื่อนอีก 1 คนเท่านั้นจะไปคู่กับคนอื่นอีกไม่ได้

ดังนั้นสำหรับฟังก์ชันหนึ่งต่อหนึ่ง ถ้ามีคู่อันดับสองคู่ที่สมาชิกตัวหลังเท่ากันแล้วจะได้ว่าสมาชิกตัวหน้าจะต้องเท่ากัน

ตัวอย่างเช่น

ให้ A = {2, 4, 6} และ B ={a, b, c}

ดังนั้น {(2, c), (4, a), (6, b)} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

จากตัวอย่างข้างต้นนอกจากจะเป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B แล้ว ยังเป็นฟังก์ชันจาก A ไปทั่วถึง B อีกด้วย

ดังนั้นจะได้ว่า {(2, c), (4, a), (6, b)} เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไปทั่วถึง B เขียนแทนด้วย f : A\xrightarrow[onto]{1-1}B

 

ตัวอย่าง ฟังก์ชันจากเซตไปอีกเซตหนึ่ง

 

1.) จงตรวจสอบว่า f = {{(x, y):\sqrt{x+1}+\sqrt{y+1}=2}} เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่

เนื่องจากฟังก์ชันหนึ่งต่อหนึ่ง ถ้ามีคู่อันดับ 2 คู่ ที่ สมาชิกตัวหลังเท่ากัน จะได้ว่าสมาชิกตัวหน้าก็เท่ากันด้วย

ดังนั้น ถ้าให้คู่อันดับ 2 คู่มี y เป็นสมาชิกตัวหลังและให้ x_1 , x_2 เป็นสมาชิกตัวหน้าของคู่อันดับดังกล่าว ถ้า f เป็นฟังก์ชันหนึ่งต่อหนึ่งเราจะต้องแสดงให้ได้ว่า x_1=x_2

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

2.) f(x) = 2x + 1 เป็นฟังก์ชันจาก R ไปทั่วถึง R หรือไม่ เพราะเหตุใด

ฟังก์ชันจาก R ไปทั่วถึง R หมายความว่า โดเมนของฟังก์ชันคือ R และเรนจ์ของฟังก์ชันก็คือ R เหมือนกัน

ตอบ f เป็นฟังก์ชันจาก R ไปทั่วถึง R เพราะ จาก โดเมน คือ  R ซึ่งเป็นจำนวนจริง จากสมบัติของจำนวนจริง (สมบัติปิดการบวกและการคูณ) ทำให้ได้ว่าไม่ว่าจะแทน x เป็นจำนวนจริงตัวใด เมื่อบวกหรือคูณกันแล้วก็ยังได้จำนวนจริงเหมือนเดิม จึงได้ว่าเรนจ์ของ f คือ R

 

3.) กำหนดให้ A = {1, 2, 3}, B = {2, 3, 4}

3.1) f_1 = {(1, 3), (2, 4), (3, 3)} เป็นฟังก์ชันใดบ้างบ้าง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

จากรูป จะเห็นว่า เรนจ์ของ f เป็นสับเซตของ B

ดังนั้นจะได้ว่า f_1 เป็นฟังก์ชันจาก A ไป B

 

3.2) f_2 = {(2, 2), (3, 3) , (4, 1)} เป็นฟังก์ชันใดบ้าง

จาก คู่อันดับข้างต้น สังเกตดู (4, 1) ตัวหน้าคือสมาชิกของเซต B และตัวหลังเป็นสมาชิกของเซต A แสดงว่า ฟังก์ชันนี้เป็นฟังก์ชันจาก B ไป A แน่นอน

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

จากรูป จะเห็นว่า สมาชิกในเซต A โดนจับคู่แค่ตัวละครั้ง ทั้ง A และ B สมาชิกทุกตัวมีคู่หมด

ดังนั้น f_2 เป็นฟังก์ชัน 1-1 จาก B ไปทั่วถึง A

 

4.) g(x) = x² + 1 เป็นฟังก์ชัน 1-1 หรือไม่

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

มารยาทในการอ่านที่นักอ่านทุกคนควรรู้

บทเรียนวันนี้เป็นเรื่องง่าย ๆ ที่มักจะถูกละเลย มองข้ามไป นั่นก็คือเรื่องมารยาทในการอ่านนั่นเองค่ะ น้อง ๆ หลายคนคงสงสัยว่ามารยาทในการอ่านนั้นสำคัญอย่างไร ทำไมเราถึงต้องเรียนรู้เรื่องนี้เช่นเดียวกับมารยาทในการฟังและมารยาทในการพูดด้วย เราไปเรียนรู้เรื่องนี้ไปพร้อม ๆ เลยดีกว่าค่ะ มารยาทในการอ่าน   ความหมายของมารยาทในการอ่าน มารยาท หมายถึง กิริยาวาจาที่ถือว่าสุภาพเรียบร้อยถูกกาลเทศะ ส่วนการอ่าน หมายถึง พฤติกรรมการรับสารอย่างหนึ่ง รับรู้เรื่องราวโดยการใช้ตามองแล้วใช้สมองประมวลผลข้อมูลต่าง ๆ เกิดเป็นการรับรู้และความเข้าใจ มารยาทในการอ่านจึงหมายถึง

อัตราส่วนของจำนวนหลายๆ จำนวน

อัตราส่วนของจำนวนหลายๆ จำนวน

ในบทความนี้เราจะได้เรียนรู้หลักการเขียนอัตราส่วนแทนการเปรียบเทียบปริมาณของสิ่งต่างๆที่มากกว่า 2 สิ่งขึ้นไปได้ โดยใช้ความรู้เกี่ยวกับอัตราส่วนของจํานวนหลายๆจํานวนในการแก้ปัญหาหรือสถานการณ์ต่าง ๆได้

NokAcademy_Definite & Indefinite Articles M1

Definite & Indefinite Articles

  Hi guys! สวัสดีค่ะนักเรียนชั้น ม.1 ที่น่ารักทุกคนวันนี้ครูได้สรุปเรื่อง  Articles: a/an/the พร้อมเทคนิคการนำไปใช้ มาฝากกันค่ะ หากพร้อมแล้วก็ไปลุยกันเลย   Articles คืออะไร   Articles เป็นคำคุณศัพท์อย่างหนึ่ง การเรียน เรื่อง Articles นี้ที่มีหน้าที่หลักคือ ใช้นำหน้าคำนาม เราต้องทำความเข้าใจควบคู่ไปกับเรื่องนามนับได้ ( Countable

วัฒนธรรมกับภาษา

วัฒนธรรมกับภาษา ความสัมพันธ์ของสองสิ่งที่มนุษย์สร้างขึ้น

มนุษย์ก่อให้เกิดภาษา และภาษาก็ก่อให้เกิดวัฒนธรรม น้อง ๆ สงสัยกันหรือไม่คะว่ามนุษย์ วัฒนธรรมกับภาษา เกี่ยวข้องและเชื่อมโยงกันได้อย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงเรื่องราวที่ว่านี่กันค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้กันเลยค่ะ   มนุษย์ วัฒนธรรมกับภาษา   วัฒนธรรม คืออะไร วัฒนธรรมเป็นสิ่งที่มนุษย์สร้างขึ้น รากศัพท์ในภาษาละตินมีความหมายว่าการเพาะปลูก แต่ไม่ได้ใช้แค่ในเชิงเกษตรกรรม แต่จะรวมไปถึงการปลูกฝังในด้านต่าง ๆ ทั้งให้การศึกษา ความเคารพ ซึ่งทั้งหมดนี้ล้วนเป็นสิ่งที่มนุษย์เปลี่ยนแปลง

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์ (1) ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1