จุด : เรขาคณิตวิเคราะห์

จุด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จุด

จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น

จุด

 

ระยะทางระหว่างจุดสองจุด

เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร

โดยจะกำหนดให้ \inline P_{1}(x_{1},y_{1}) และ \inline P_{2}(x_{2},y_{2}) เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก

\inline \mathbf{{\color{DarkOrange} \left | P_{1}P_{2} \right | = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}}

ตัวอย่าง

จุด

ระยะห่างระหว่าง A(1,1) และ B(3,2) คือ               จุด

จุดกึ่งกลางของส่วนของเส้นตรง

ให้ A(x, y) เป็นจุดกึ่งกลางของเส้นตรงที่มีจุดปลายคือจุด \inline P_1(x_1,y_1) และ \inline P_2(x_2,y_2) จะได้ว่า \inline x=\frac{x_1+x_2}{2} และ \inline y=\frac{y_1+y_2}{2}

ตำแหน่งของจุดกึ่งกลางเป็นดังรูป

จุด

ตัวอย่าง

จุด

จุดแบ่งส่วนของเส้นตรงที่ไม่ใช่จุดกึ่งกลาง

กรณีที่จุด A(x, y) เป็นจุดแบ่งเส้นตรงที่ไม่ใช่จุดกึ่งกลาง เช่น

จะได้ว่า {\color{DarkOrange} x=\frac{nx_1+mx_2}{m+n}} และ {\color{DarkOrange} y=\frac{ny_1+my_2}{m+n}}

จุดตัดของเส้นมัธยฐาน

เส้นมัธยฐานคือเส้นตรงที่ลากจากจุดกึ่งกลางของเส้นตรงไปยังจุดยอดด้านตรงข้าม ดังรูป

จากที่น้องๆทราบกันแล้วว่าจุดตัดเส้นมัธยฐานอยู่ตรงไหน ต่อไปเราจะหาพิกัดของจุดตัดนั้นนั้น ซึ่งหาได้จาก

{\color{DarkOrange} x=\frac{x_1+x_2+x_3}{3}} และ {\color{DarkOrange} y=\frac{y_1+y_2+y_3}{3}}

 

ตัวอย่างเกี่ยวกับ จุด

 

1.) ถ้า A(x, y) และ B(3, 5) มีจุดกึ่งกลางคือ (4, -6) จงหาพิกัด A(x, y)

จุด

2.) ให้ A(-6, 4) B(3, 7) เป็นจุดปลายของส่วนของเส้นตรง จงหาพิกัดของ C บนส่วนของเส้นตรง \overline{AB} โดยที่ \overline{AC}:\overline{CB}=1:3

 

3.) หาความยาวของเส้นมัธยฐานของรูปสามเหลี่ยม ABC เมื่อกำหนดให้ พิกัด A, B และ C มีพิกัดเป็น (3, 2), (1, -3) และ (5, -3) ตามลำดับ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

รากที่สาม

รากที่สาม

ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

ประวัติความเป็นมาของวรรณคดีคำสอน เรื่องสุภาษิตพระร่วง

สุภาษิตพระร่วง   คนไทยนิยมใช้สุภาษิตสั่งสอนลูกหลานกันมาตั้งแต่สมัยก่อนจนถึงปัจจุบัน เชื่อว่าน้อง ๆ หลายคนก็คงจะเคยได้ยินสุภาษิตกันมาไม่มากก็น้อย ดังนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาของสุภาษิตพระร่วง วรรณคดีอันทรงคุณค่าและเป็นวรรณคดีเล่มแรกที่แต่งคำประพันธ์เป็นร่ายโบราณแบบร่ายสุภาพ ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของสุภาษิตพระร่วง     สุภาษิตพระร่วง เป็นวรรณคดีคำสอนที่ทรงคุณค่าที่มีมาอย่างยาวนาน มีชื่อเรียกอีกอย่างหนึ่งว่า สุภาษิตบัณฑิตพระร่วง คำว่า พระร่วง ทำให้คนเข้าใจว่าอาจจะเป็นคำสอนของกษัตริย์สักคนที่มีนามว่า พระร่วง

พาราโบลา

พาราโบลา

พาราโบลา พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix) พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้ ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x

Profile-Have has got P.5

ทบทวนการใช้ ” Have/has got “

สวัสดีค่ะนักเรียนป. 5 ที่น่ารักทุกคน วันนี้เราจะไปทบทวนการใช้  Have/has got ในภาษาอังกฤษกันค่ะ ซึ่งก่อนอื่นต้อง มาทำความรู้จักกับ Verb to have กันก่อนซึ่ง เจ้า Verb to have ที่เราอาจจะคุ้นหูบ่อยๆ เช่น  Have a wonderful day. ขอให้มีวันที่ดีนะ เมื่อเราต้องการจบบทสนทนา

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม เป็นการนำเสนอข้อมูลโดยการเเบ่งพื้นที่ของวงกลมออกเป็นส่วน ๆ เเละมีขนาดของสัดส่วนตามข้อมูลที่ได้ทำการเก็บรวบรวมข้อมูลไว้ การนำเสนอด้วยเเผนภูมิวงกลมเป็นการนำเสนอข้อมูลที่มีอยู่ได้อย่างน่าสนใจ สามารถวิเคราะห์เเละเเปรข้อมูลได้ง่ายขึ้น การสร้างแผนภูมิรูปวงกลมเพื่อนำเสนอข้อมูล การสร้างแผนภูมิวงกลม ทำได้โดยการเเบ่งมุมรอบจุดศูนย์กลางของวงกลมที่มีขนาด 360 องศา ออกเป็นส่วน ๆ ที่เรียกว่า มุมที่จุดศูนย์กลางของวงกลม ตามขนาดที่ได้จากการเทียบส่วนกับปริมาณทั้งหมดในข้อมูล มุมที่จุดศูนย์กลาง = (จำนวนที่สนใจ/จำนวนทั้งหมด) x 360 องศา ตัวอย่างการสร้างแผนภูมิวงกลม จากข้อมูลการสำรวจที่ได้เก็บรวมรวบข้อมูลจากนักเรียนทั้งหมด 200

Present Cont

Present Continuous Tense

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง” Present Continuous Tense” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว และเทคนิคการจำและนำ Tense ไปใช้กันจร้า หากพร้อมแล้วก็ไปลุยกันเลย การใช้ Present Continuous Tense     อธิบายสิ่งที่กำลังเกิดขึ้นอยู่ในขณะนั้น เช่น Danniel is playing a football at

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1