จุด : เรขาคณิตวิเคราะห์

จุด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จุด

จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น

จุด

 

ระยะทางระหว่างจุดสองจุด

เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร

โดยจะกำหนดให้ \inline P_{1}(x_{1},y_{1}) และ \inline P_{2}(x_{2},y_{2}) เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก

\inline \mathbf{{\color{DarkOrange} \left | P_{1}P_{2} \right | = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}}

ตัวอย่าง

จุด

ระยะห่างระหว่าง A(1,1) และ B(3,2) คือ               จุด

จุดกึ่งกลางของส่วนของเส้นตรง

ให้ A(x, y) เป็นจุดกึ่งกลางของเส้นตรงที่มีจุดปลายคือจุด \inline P_1(x_1,y_1) และ \inline P_2(x_2,y_2) จะได้ว่า \inline x=\frac{x_1+x_2}{2} และ \inline y=\frac{y_1+y_2}{2}

ตำแหน่งของจุดกึ่งกลางเป็นดังรูป

จุด

ตัวอย่าง

จุด

จุดแบ่งส่วนของเส้นตรงที่ไม่ใช่จุดกึ่งกลาง

กรณีที่จุด A(x, y) เป็นจุดแบ่งเส้นตรงที่ไม่ใช่จุดกึ่งกลาง เช่น

จะได้ว่า {\color{DarkOrange} x=\frac{nx_1+mx_2}{m+n}} และ {\color{DarkOrange} y=\frac{ny_1+my_2}{m+n}}

จุดตัดของเส้นมัธยฐาน

เส้นมัธยฐานคือเส้นตรงที่ลากจากจุดกึ่งกลางของเส้นตรงไปยังจุดยอดด้านตรงข้าม ดังรูป

จากที่น้องๆทราบกันแล้วว่าจุดตัดเส้นมัธยฐานอยู่ตรงไหน ต่อไปเราจะหาพิกัดของจุดตัดนั้นนั้น ซึ่งหาได้จาก

{\color{DarkOrange} x=\frac{x_1+x_2+x_3}{3}} และ {\color{DarkOrange} y=\frac{y_1+y_2+y_3}{3}}

 

ตัวอย่างเกี่ยวกับ จุด

 

1.) ถ้า A(x, y) และ B(3, 5) มีจุดกึ่งกลางคือ (4, -6) จงหาพิกัด A(x, y)

จุด

2.) ให้ A(-6, 4) B(3, 7) เป็นจุดปลายของส่วนของเส้นตรง จงหาพิกัดของ C บนส่วนของเส้นตรง \overline{AB} โดยที่ \overline{AC}:\overline{CB}=1:3

 

3.) หาความยาวของเส้นมัธยฐานของรูปสามเหลี่ยม ABC เมื่อกำหนดให้ พิกัด A, B และ C มีพิกัดเป็น (3, 2), (1, -3) และ (5, -3) ตามลำดับ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

like love enjoy ving

การแนะนำตัวเองและให้ข้อมูลโดยใช้ “Like”, “Love”, และ “Enjoy”

สวัสดีน้องๆ ม. 1 ทุกคนนะครับ คราวที่แล้วเราได้อ่านเรื่องการใช้ประโยคคำสั่ง ขอร้อง และคำแนะนำกันไปแล้ว วันนี้เราจะมาดูวิธีการแนะนำตัวเอง และให้ข้อมูลคร่าวๆ เกี่ยวกับตัวเราแบบง่ายๆ กันครับ

ลำดับเรขาคณิต

ลำดับเรขาคณิต

ลำดับเรขาคณิต ลำดับเรขาคณิต คือ ลำดับที่มีจำนวนเพิ่มขึ้นหรือลดลงอย่างคงที่เป็นจำนวนเท่า ซึ่งจำนวนที่เพิ่มขึ้นหรือลดลงนั้นเรียกว่า อัตราส่วนร่วม เขียนแทนด้วย r โดยที่ r = พจน์ขวาหารด้วยพจน์ซ้าย การเขียนลำดับเราจะเขียนแทนด้วย    โดยที่ คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง ตัวอย่างของลำดับเรขาคณิต 2, 4, 8, 16, 32, … จะได้ว่า 

เรียนรู้เรื่อง ส่วนประกอบของประโยค

​ประโยค คือถ้อยคำต่าง ๆ ที่นำมาเรียงกันแล้วมีใจความสมบูรณ์ว่าใครกำลังทำอะไร ที่ไหน และเมื่อไหร่ บทเรียนในวันนี้ น้อง ๆ จะได้เรียนรู้เรื่อง ส่วนประกอบของประโยค เพื่อให้เข้าใจมากขึ้นว่าประโยคที่เราใช้กันอยู่ทุกวันนี้ประกอบด้วยอะไรบ้าง ไปเรียนรู้พร้อมกันเลยค่ะ   ส่วนประกอบของประโยค   โดยทั่วไปประโยคจะมีอยู่ด้วยกัน 2 ภาค คือ ภาคประธานและภาคแสดง     ภาคประธาน คือ

การอ่านแผนภูมิรูปวงกลม

ในบทความนี้เราจะได้เรียนรู้การอ่านแผนภูมิรูปวงกลมรวมทั้งส่วนประกอบต่างที่ควรรู้เกี่ยวกับแผนภูมิรูปวงกลม

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1