ความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความสัมพันธ์

ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น

ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ

คู่อันดับ

ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที

เช่น คู่อันดับ (x, y) โดย x แทนเวลาที่ใช้ในการอ่านหนังสือ y แทนจำนวนหน้าของหนังสือที่อ่านแล้ว เมื่อแทนคู่อันดับด้วย (10, 3) หมายความว่าใช้เวลา 10 นาทีในการอ่านหนังสือ และจำนวนหน้าที่อ่านได้คือ 3 หน้า   แต่! ถ้าน้องเขียนคู่อันดับเป็น (3, 10) จะหมายความว่า ใช้เวลา 3 นาที อ่านหนังสือทั้งหมด 10 หน้า จะเห็นว่าความหมายต่างกันโดยสิ้นเชิง ดังนั้นน้องๆควรดูคู่อันดับให้ดีๆนะคะ

โดยทั่วไปแล้ว เราจะใช้ (x, y) หรือ (a, b) เป็นตัวแปรของคู่อันดับในทางคณิตศาสตร์ โดยที่เราจะเรียก x, a ว่า สมาชิกตัวหน้าของคู่อันดับ และเรียก y, b ว่า สมาชิกตัวหลังของคู่อันดับ

 

บทนิยามของคู่อันดับ

กำหนดให้คู่อันดับ (x, y) ใดๆ จะได้ว่า คู่อันดับ (x, y) = (a, b) เมื่อ x = a และ y = b

อธิบายให้เข้าใจก็คือ คู่อันดับ 2 คู่จะเท่ากันได้ สมาชิกตัวหน้าของทั้งสองคู่อันดับจะต้องเท่ากัน และ สมาชิกตัวหลังของคู่อันดับก็ต้องเท่ากันด้วย

เช่น

  1. (x, -5) = (6, y) จะได้ว่า x = 6 และ y = -5
  2. (5x, y + 2) = (10, 3x)

ความสัมพันธ์

 

ผลคูณคาร์ทีเซียน

นิยาม ผลคูณคาร์ทีเซียนของเซต A และ B คือ {(a, b) : a ∈ A และ b ∈ B} เขียนแทนด้วย A × B

แปลให้เข้าใจง่าย ผลคูณคาร์ทีเซียนก็คือ คู่อันดับเซตใหม่ที่เกิดจากการเอาสมาชิกใน A และ B มาจับคู่กัน โดยสมาชิกตัวหน้ามาจาก A และสมาชิกตัวหลังมาจาก B

ตัวอย่าง A = {1, 2, 3}  B = {a, b}

A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

B × B ={(a, a), (a, b), (b, a), (b, b)}

เราสามารถหาจำนวนคู่อันดับผลคูณคาร์ทีเซียนได้ ด้วยสูตร n(A×B) = n(A) × n(B)

จะได้ว่า n(A×A) = 3 × 3 = 9      n(A×B) = 3 × 2 = 6     n(B×B) = 2 × 2 = 4

ความสัมพันธ์

บทนิยามของความสัมพันธ์

ให้ A และ B เป็นเซตใดๆ เราจะบอกว่า r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B

หมายความว่า คู่อันดับใดๆใน r จะเป็นความสัมพันธืจาก A ไป B ก็ต่อเมื่อ เซตของคู่อันดับเหล่านั้นเป็นสับเซตของผลคูณคาร์ทีเซียน A × B นั่นเอง

เช่น  A = {1, 2, 3}  B = {a, b}

จะได้ว่า  A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

r_{1} = {(1, a), (2, b), (3, b)} เป็นความสัมพันธ์จาก A ไป B เพราะ {(1, a), (2, b), (3, b)} ⊂ A × B

r_2 = {(1, a), (1, b), (2, a), (1, 1)} ไม่เป็นความสัมพันธ์จาก A ไป B เพราะ (1, 1) ไม่เป็นสมาชิกของ A × B นั่นคือ {(1, a), (1, b), (2, a), (1, 1)} ⊄ A × B

ความสัมพันธ์ r ข้างต้นเป็นการเขียนความสัมพันธ์แบบแจกแจงสมาชิก 

 

การเขียนความสัมพันธ์ r แบบบอกเงื่อนไข

 

ให้ A = {1, 2, 3}  B = {1, 2}  และความสัมพันธ์ r = {(x, y) ∈ B × A : x < y}

เราจะได้ B × A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}

จากเงื่อนไข x < y

ให้เราพิจารณาว่าจากผลคูณคาร์ทีเซียนข้างต้นกว่า มีคู่ไหนตรงตามเงื่อนไขบ้าง

จะได้คู่อันดับ ดังนี้  (1, 2), (1, 3), (2, 3) ดังนั้นจะได้ว่า r = {(1, 2), (1, 3), (2, 3)}

ทำไมถึงต้องพิจารณาเงื่อนไขจากผลคูณคาร์ทีเซียน?

เพราะว่า r นั้นเป็นคู่อันดับที่เป็นสมาชิกของ B × A นั่นเอง

และเรายังได้อีกว่า r เป็นความสัมพันธ์จาก B ไป A

 

เรามาดูตัวอย่างอีกหนึ่งข้อกันค่ะ

ให้ A ={1, 2, 4, 5}   B = {1, 2, 5} และให้ r = {(x, y) ∈ A × B : 2x < y}

จะเขียนคู่อันดับของ r

ความสัมพันธ์

วิดีโอเรื่อง ความสัมพันธ์

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Past Simple Tense เน้น Verb to be

การใช้ Past Simple Tense เน้น Verb to be เกริ่นนำ เกริ่นใจ เรื่องอดีตนั้นไม่ง่ายที่จะลืม โดยเฉพาะอย่างยิ่ง เรื่องราวชีวิตของใครคนหนึ่งที่เราเอาใจใส่ นั่นจึงเป็นเหตุผลว่าทำไมเราควรที่จะให้ความสำคัญกับการทำความเข้าใจเรื่องง่าย ๆ อย่าง Past simple tense ซึ่งเป็นโครงสร้างประโยคที่เราใช้ในการเล่าเรื่องราวในอดีตที่เคยเกิดขึ้นแล้วตั้งแต่เมื่อกี้ ไปจนถึงเรื่องของเมื่อวาน  ภาษาไทยของเราเองก็ใช้โครงสร้างประโยคนี้บ่อย ๆ โดยเฉพาะอย่างยิ่งตอนที่เราอยากจะเล่าเรื่องของเรา ของใครคนอื่นที่เราอยากจะเม้ามอยกับคนรอบข้างอ่ะ

การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้นำเสนอ การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก โดยที่น้องๆจะได้รู้จักกับ บทนิยามของเลขยกกำลัง ซึ่งจะทำให้น้องๆรู้จักเลขชี้กำลังและฐานของเลขยกกำลัง และสามารถหาค่าของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวกได้ ก่อนอื่นเรามาทำความรู้จักกับเลขยกกำลังผ่านนิยามของเลขยกกำลัง ดังต่อไปนี้ บทนิยามของเลขยกกำลัง บทนิยาม  ถ้า a แทนจำนวนใด ๆ และ n แทนจำนวนเต็มบวก “a ยกกำลัง n” เขียนแทนด้วย aⁿ  มีความหมายดังนี้ a

บทนมัสการมาตาปิตุคุณ

บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ บทอาขยานที่ควรค่าแก่การจำ

จนถึงตอนนี้น้อง ๆ คงได้เรียนวรรณคดีกันมามากมายหลายเรื่อง แต่ละเรื่องก็อาจจะมีการใช้ลักษณะคำประพันธ์ที่ต่างกันออกไป หรือซ้ำกันบ้าง บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ ก็เป็นหนึ่งในวรรณคดีไทยที่อยู่ในแบบเรียนของน้อง ๆ แต่ความพิเศษคือลักษณะคำประพันธ์ที่น้อง ๆ อาจจะไม่เคยได้ยินมาก่อนอย่าง อินทรวิเชียร์ฉันท์ 11 จะเป็นอย่างไรบ้าง ถ้าพร้อมแล้วไปเรียนรู้วรรณคดีเรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของบทนมัสการมาตาปิตุคุณ และอาจาริยคุณ   บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ เป็นบทร้อยกรองขนาดสั้น มีเนื้อหาแสดงคุณของบิดามารดาและครูอาจารย์ ประพันธ์ขึ้นโดย

สถิติ (เส้นโค้งความถี่)

บทความนี้ได้รวบรวมความรู้เรื่อง สถิติ (เส้นโค้งความถี่)  ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง    ค่ากลางของข้อมูล และการวัดการกระจายของข้อมูล สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล) ⇐⇐ เส้นโค้งของความถี่ จะมีอยู่ 3 แบบ คือ เส้นโค้งปกติ เส้นโค้งเบ้ขวา และเส้นโค้งเบ้ซ้าย ซึ่งจะมีความสัมพันธ์กับค่ากลางของข้อมูล  ได้แก่ ค่าเฉลี่ยเลขคณิต (μ)   มัธยฐาน (Med) และฐานนิยม

สามัคคีเภทคำฉันท์

สามัคคีเภทคำฉันท์ วรรณคดีขนาดสั้นที่ว่าด้วยความสามัคคี

สามัคคีเภทคำฉันท์ เป็นนิทานสุภาษิตขนาดสั้นว่าด้วยเรื่องความสามัคคี เป็นอีกหนึ่งวรรณคดีที่ได้รับการยกย่องว่าแต่งดี ทั้งด้านการประพันธ์และเนื้อหา เหตุใดจึงเป็นเช่นนั้น บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนไปทำความรู้จักกับวรรณคดีเรื่องดังกล่าวเพื่อศึกษาที่มา จุดประสงค์ รวมไปถึงเรื่องย่อ ถ้าพร้อมแล้วไปดูกันเลยค่ะ   ที่มาของเรื่องและจุดประสงค์ในการแต่ง   สามัคคีเภทคำฉันท์ ดำเนินเรื่องโดยอิงประวัติศาสตร์ครั้งพุทธกาล เป็นนิทานสุภาษิตในมหาปรินิพพานสูตรและอรรถกถาสุมังคลวิลาสินี     ในสมัยรัชกาลที่ 6 เกิดวิกฤตการณ์ทั้งภายในและภายนอกประเทศ เช่น เกิดสงครามโลกครั้งที่ 1

โคลงโลกนิติ ประวัติความเป็นมาและเรื่องย่อ

โคลงโลกนิติ เป็นคำโคลงที่ถูกแต่งไว้ตั้งแต่สมัยกรุงศรีอยุธยา ดูจากช่วงเวลาแล้ว น้อง ๆ หลายคนคงจะสงสัยว่าเหตุใดบทประพันธ์ที่มีมาตั้งแต่ยุคก่อนโน้น ยังถูกนำมาเป็นบทเรียนให้คนรุ่นหลังสมัยนี้ศึกษาอยู่ โคลงโลกนิติเป็นบทประพันธ์แบบใด ถึงได้รับการอนุรักษ์ไว้มาอย่างยาวนาน วันนี้เรามาเรียนรู้ถึงประวัติความเป็นมาและเรื่องย่อของโคลงโลกนิติกันค่ะ โคลงโลกนิติ ประวัติและความเป็นมา โคลงโลกนิติเป็นบทประพันธ์ที่มีมาตั้งแต่สมัยกรุงศรีอยุธยา ไม่ปรากฏนามผู้แต่งที่ชัดเจน เนื่องจากเป็นสุภาษิตเก่าที่ถูกนำมาร้อยเรียงเป็นคำโคลง ต่อมา เมื่อถึงสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่หัว ทรงปฏิสังขรณ์วัดพระเชตุพนวิมลมังคลาราม (วัดโพธ์) และประสงค์ให้มีการนำโคลงโลกนิติมาจารึกลงแผ่นศิลาติดไว้เป็นธรรมทาน เพื่อที่ประชาชนจะได้ศึกษาคติธรรมจากบทประพันธ์   ผู้แต่งโคลงโลกนิติ เดิมทีไม่มีปรากฏชื่อผู้แต่งที่ชัดเจนและไม่มีหลักฐานยืนว่าโคลงโลกนิติถูกแต่งขึ้นเมื่อไหร่ แต่นักวรรณคดีศึกษาคาดว่าโคลงโลกนิติแพร่หลายในสมัยกรุงศรีอยุธยา

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1