ความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความสัมพันธ์

ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น

ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ

คู่อันดับ

ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที

เช่น คู่อันดับ (x, y) โดย x แทนเวลาที่ใช้ในการอ่านหนังสือ y แทนจำนวนหน้าของหนังสือที่อ่านแล้ว เมื่อแทนคู่อันดับด้วย (10, 3) หมายความว่าใช้เวลา 10 นาทีในการอ่านหนังสือ และจำนวนหน้าที่อ่านได้คือ 3 หน้า   แต่! ถ้าน้องเขียนคู่อันดับเป็น (3, 10) จะหมายความว่า ใช้เวลา 3 นาที อ่านหนังสือทั้งหมด 10 หน้า จะเห็นว่าความหมายต่างกันโดยสิ้นเชิง ดังนั้นน้องๆควรดูคู่อันดับให้ดีๆนะคะ

โดยทั่วไปแล้ว เราจะใช้ (x, y) หรือ (a, b) เป็นตัวแปรของคู่อันดับในทางคณิตศาสตร์ โดยที่เราจะเรียก x, a ว่า สมาชิกตัวหน้าของคู่อันดับ และเรียก y, b ว่า สมาชิกตัวหลังของคู่อันดับ

 

บทนิยามของคู่อันดับ

กำหนดให้คู่อันดับ (x, y) ใดๆ จะได้ว่า คู่อันดับ (x, y) = (a, b) เมื่อ x = a และ y = b

อธิบายให้เข้าใจก็คือ คู่อันดับ 2 คู่จะเท่ากันได้ สมาชิกตัวหน้าของทั้งสองคู่อันดับจะต้องเท่ากัน และ สมาชิกตัวหลังของคู่อันดับก็ต้องเท่ากันด้วย

เช่น

  1. (x, -5) = (6, y) จะได้ว่า x = 6 และ y = -5
  2. (5x, y + 2) = (10, 3x)

ความสัมพันธ์

 

ผลคูณคาร์ทีเซียน

นิยาม ผลคูณคาร์ทีเซียนของเซต A และ B คือ {(a, b) : a ∈ A และ b ∈ B} เขียนแทนด้วย A × B

แปลให้เข้าใจง่าย ผลคูณคาร์ทีเซียนก็คือ คู่อันดับเซตใหม่ที่เกิดจากการเอาสมาชิกใน A และ B มาจับคู่กัน โดยสมาชิกตัวหน้ามาจาก A และสมาชิกตัวหลังมาจาก B

ตัวอย่าง A = {1, 2, 3}  B = {a, b}

A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

B × B ={(a, a), (a, b), (b, a), (b, b)}

เราสามารถหาจำนวนคู่อันดับผลคูณคาร์ทีเซียนได้ ด้วยสูตร n(A×B) = n(A) × n(B)

จะได้ว่า n(A×A) = 3 × 3 = 9      n(A×B) = 3 × 2 = 6     n(B×B) = 2 × 2 = 4

ความสัมพันธ์

บทนิยามของความสัมพันธ์

ให้ A และ B เป็นเซตใดๆ เราจะบอกว่า r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B

หมายความว่า คู่อันดับใดๆใน r จะเป็นความสัมพันธืจาก A ไป B ก็ต่อเมื่อ เซตของคู่อันดับเหล่านั้นเป็นสับเซตของผลคูณคาร์ทีเซียน A × B นั่นเอง

เช่น  A = {1, 2, 3}  B = {a, b}

จะได้ว่า  A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

r_{1} = {(1, a), (2, b), (3, b)} เป็นความสัมพันธ์จาก A ไป B เพราะ {(1, a), (2, b), (3, b)} ⊂ A × B

r_2 = {(1, a), (1, b), (2, a), (1, 1)} ไม่เป็นความสัมพันธ์จาก A ไป B เพราะ (1, 1) ไม่เป็นสมาชิกของ A × B นั่นคือ {(1, a), (1, b), (2, a), (1, 1)} ⊄ A × B

ความสัมพันธ์ r ข้างต้นเป็นการเขียนความสัมพันธ์แบบแจกแจงสมาชิก 

 

การเขียนความสัมพันธ์ r แบบบอกเงื่อนไข

 

ให้ A = {1, 2, 3}  B = {1, 2}  และความสัมพันธ์ r = {(x, y) ∈ B × A : x < y}

เราจะได้ B × A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}

จากเงื่อนไข x < y

ให้เราพิจารณาว่าจากผลคูณคาร์ทีเซียนข้างต้นกว่า มีคู่ไหนตรงตามเงื่อนไขบ้าง

จะได้คู่อันดับ ดังนี้  (1, 2), (1, 3), (2, 3) ดังนั้นจะได้ว่า r = {(1, 2), (1, 3), (2, 3)}

ทำไมถึงต้องพิจารณาเงื่อนไขจากผลคูณคาร์ทีเซียน?

เพราะว่า r นั้นเป็นคู่อันดับที่เป็นสมาชิกของ B × A นั่นเอง

และเรายังได้อีกว่า r เป็นความสัมพันธ์จาก B ไป A

 

เรามาดูตัวอย่างอีกหนึ่งข้อกันค่ะ

ให้ A ={1, 2, 4, 5}   B = {1, 2, 5} และให้ r = {(x, y) ∈ A × B : 2x < y}

จะเขียนคู่อันดับของ r

ความสัมพันธ์

วิดีโอเรื่อง ความสัมพันธ์

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม6Passive Modals

มารู้จักกับ Passive Modals

สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals” ที่ใช้บ่อยพร้อม เทคนิคการจำและนำไปใช้ และทำแบบฝึกหัดท้ายบทเรียน กันค่า Let’s go! ไปลุยกันโลดเด้อ   Passive Modals คืออะไรเอ่ย   Passive Modals คือ กลุ่มของ Modal verbs ที่ใช้ในโครงสร้าง

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

Profile

การตั้งประโยคคำถามแบบมีกริยาช่วยนำหน้าและ Wh-questions

สวัสดีค่ะนักเรียนชั้นม.1 ทุกคน วันนี้ครูจะพาไปดู ความแตกต่างของ ประโยคคำถามที่มีกริยาช่วยนำหน้า กับ Wh-questions กันค่ะ พร้อมแล้วก็ไปลุยกันเลย มารู้จักกับกริยาช่วย   Helping verb หรือ Auxiliary verb กริยาช่วย หรือ ภาษาทางการเรียกว่า กริยานุเคราะห์  คือกริยาที่วางอยู่หน้ากริยาหลัก (Main verb) ในประโยค  ทำหน้าที่ช่วยกริยาอื่นให้มีความหมายตาม

เรียนรู้และเข้าใจเรื่องคำซ้อนในภาษาไทย

คำซ้อน เป็นหนึ่งในบทเรียนหลักภาษาไทยเรื่องการสร้างคำ น้อง ๆ หลายคนอาจจะเคยสับสนกับวิธีสร้างคำซ้อน ไม่รู้ว่าแบบไหนกันแน่ที่เรียกว่าคำซ้อน เพราะภาษาไทยเรานั้นก็มีคำมากมายเหลือเกิน วันนี้เราจะมาเรียนรู้เรื่องคำซ้อนให้มากขึ้น รับรองว่าไม่ยากแน่นอนค่ะ   คำซ้อน     ความหมายของคำซ้อน   คำซ้อน คือ คำที่เกิดจากการนำคำตั้งแต่ 2 คำ ขึ้นไปมาเรียงต่อกัน โดยคำที่นำมาซ้อนกันจะต้องเป็นคำที่มีความหมายเหมือนกัน ใกล้เคียงกัน ตรงข้ามกัน หรืออาจมีเสียงที่คล้ายกัน

โคลงนฤทุมนาการ โคลงสุภาษิตสอนใจรู้ไว้ไม่เป็นทุกข์

หลังจากได้ศึกษาเรื่องโคลงโสฬสไตรยางค์ไปแล้ว น้อง ๆ ทราบไหมคะว่าในโครงสุภาษิตยังมีเรื่องอื่นอีกด้วย และในบทเรียนที่น้อง ๆ จะได้เรียนต่อไปนี้ก็คือเรื่อง โคลงนฤทุมนาการ เป็นโคลงสุภาษิต ที่ใช้โคลงสี่สุภาพในการประพันธ์เหมือนโคลงโสฬสไตรยางค์ แต่จะมีความหมาย และเนื้อหาอย่างไรบ้าง ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   โคลงนฤทุมนาการ คืออะไร     ก่อนที่จะไปเรียนรู้ว่าในโคลงนฤทุมนาการมีอะไรบ้างนั้น เรามาดูกันที่ความหมายก่อนเลยค่ะ คำว่า นฤทุมนาการ มาจากคำศัพท์ต่าง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1