ความรู้เบื้องต้นเกี่ยวกับเซต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เซตคืออะไร?

เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ

ทำไมต้องเรียนเซต

เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น

ความรู้เบื้องต้นเกี่ยวกับเซต

เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น

สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ a,e,i,o,u

การเขียนเซต

การเขียนเซตจะเขียนได้ 2 วิธี

1.) เขียนแบบแจกแจงสมาชิก คือการเขียนสมาชิกไว้ในวงเล็บปีกกา “{ }”แล้วคั่นสมาชิกแต่ละตัวด้วย “,” เช่น

ให้ A แทนเซตของจำนวนนับที่น้อยกว่า 10

ดังนั้น A = {1,2,3,4,5,6,7,8,9} 

2.) เขียนแบบบอกเงื่อนไข คือการกำหนดตัวแปรขึ้นมาแล้วใส่เงื่อนไขให้ตัวแปรนั้น เช่น

A = {x|x ∈ N และ x < 10}  จากข้อความนี้ แปลได้ว่า A เท่ากับ x โดยที่ x เป็นสมาชิกของจำนวนนับและ x น้อยกว่า 10 

“|” แทนคำว่า โดยที่ หรืออาจจะใช้ “:” แทนคำว่าโดยที่ก็ได้

ประเภทของเซต

1.) เซตว่าง (Empty set) คือเซตที่มีจำนวนสมาชิกเป็น 0 โดยจะใช้สัญลักษณ์ Ø หรือ { } แทน เซตว่าง

เช่น ให้ A แทนเซตของจำนวนเดือนที่มี 32 วัน เราจะเห็นว่าไม่มีเดือนไหนที่มี 32 วัน ดังนั้น A = Ø หรือ A = { }

2.) เซตจำกัด (Finite set) คือ เซตที่สามารถระบุจำนวนสมาชิกได้

เช่น เซตของของจำนวนนับที่น้อยกว่า 10  สามารถเขียนได้ดังนี้ {1,2,3,4,5,6,7,8,9}  จะเห็นว่ามีจำนวนสมาชิกเท่ากับ 9

**เซตว่าง เป็นเซตจำกัด เนื่องจากมีจำนวนสมาชิกเท่ากับ 0**

3.) เซตอนันต์ (infinite set) คือ เซตที่ไม่สามารถระบุจำนวนสมาชิกได้ เช่น

เซตของจำนวนนับ {1,2,3,…} เป็นเซตอนันต์ เพราะเราไม่สามารถบอกได้ว่ามีจำนวนสมาชิกเท่าไหร่

เซตของจำนวนเต็ม {…,-3,-2,-1,0,1,2,3,…} เป็นเซตอนันต์

**{1,2,3,…} หมายถึง มีจำนวนอื่นต่อไปอีกเรื่อยๆ

 

ตัวอย่าง

 

1.)

 

 

 

 

A = {1,2,4,5,8}

จากรูปจะได้ว่า

>> สมาชิกของ A ประกอบด้วย 1,2,4,5,8

>> จำนวนสมาชิกของ A เท่ากับ 5

>> A เป็นเซตจำกัด

 

2.)

 

 

 

 

 

A = {1,3,5}           B = {2,4,6}

จากรูป สามารถบอกได้ว่า

>> 1,3,5 เป็นสมาชิกของ A แต่ไม่เป็นสมาชิกของ B

>> 2,4,6 เป็นสมาชิกของ B แต่ไม่เป็นสมาชิกของ A

>> 0,7,8,9 ไม่เป็นสมาชิก ของ A และไม่เป็นสมาชิกของ B

>> A และ B เป็นเซตจำกัด

>> 0,1,2,3,4,5,6,7,8,9 เป็นสมาชิก ของ U

โดยที่ U คือเอกภพสัมพัทธ์

 

3.)ให้ B เป็นเซตของจำนวนเต็มคู่ที่มากกว่า 0

จะได้ว่า B = {2,4,6,8,…} จะเห็นว่าเราไม่สามารถระบุจำนวนสมาชิกของเซต B ได้ ดังนั้น B เป็นเซตอนันต์

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ป.5เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

สวัสดีนักเรียนชั้นมป.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับ  “เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลยค่า Let’s go! ความหมาย   Present แปลว่า ปัจจุบัน  Simple แปลว่า ธรรมดา ส่วน Tense นั้น แปลว่ากาล ดังนั้น

การแก้อสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ หลักการแก้อสมการเชิงเส้นตัวแปรเดียว ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้ จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ) ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

คติธรรมในสำนวนไทย

คติธรรม หมายถึง ธรรมที่เป็นแบบอย่าง เป็นวัฒนธรรมที่เกี่ยวกับหลักการดำเนินชีวิตซึ่งได้มาจากหลักธรรมทางพระพุทธศาสนาหรืออาจเรียกได้ว่าเป็นวัฒนธรรมทางจิตใจอย่างหนึ่งที่คนไทยให้ความสำคัญอย่างมากและมักจะถูกสอดแทรกอยู่ในสื่อต่าง ๆ เพื่อปลูกฝังเด็กรุ่นใหม่ให้มีคติธรรมประจำใจ ไม่ว่าจะเป็นนิทานหรือสำนวนไทย สำหรับบทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้เรื่อง คติธรรมในสำนวนไทย มาดูกันค่ะว่าจะมีอะไรบ้าง   สำนวนที่เกี่ยวกับคติธรรม   สำนวนไทยถือเป็นภูมิปัญญาในการใช้ภาษาไทยอีกรูปแบบหนึ่ง เป็นถ้อยคำที่มิได้มีความหมายตรงไปตรงมาตามตัวอักษร หรือแปลตามรากศัพท์ แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น ชวนให้ผู้อ่านได้คิด มีรูปแบบการใช้ภาษาที่ต้องผ่านการเรียบเรียงถ้อยคำ การรวมข้อความยาว ๆ ให้สั้น โดยนำถ้อยคำเพียงไม่กี่คำมาเรียงร้อย

ความหมายและความสำคัญของ คำราชาศัพท์

  คำราชาศัพท์ เป็นวัฒนธรรมทางภาษาของประเทศไทยที่ให้ความสำคัญกับระดับของผู้พูดและผู้ฟัง น้อง ๆ หลายคนคงคุ้นเคยกันมาบ้างแล้วเวลาฟังข่าวในพระราชสำนัก แต่รู้หรือไม่คะว่าความหมายจริง ๆ ของคำราชาศัพท์คืออะไร มีใครบ้างที่เราต้องใช้คำราชาศัพท์ด้วย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทบทวนเรื่องคำราชาศัพท์พร้อมเรียนรู้คำราชาศัพท์ในหมวดร่างกายที่ใช้กับพระมหากษัตริย์กันค่ะ   ความหมายของคำราชาศัพท์     คำราชาศัพท์ หมายถึง คำที่ใช้กับพระมหากษัตริย์ และพระบรมวงศานุวงศ์ รวมไปถึงพระสงฆ์ โดยที่มีคำศัพท์และลักษณะการใช้ที่แตกต่างกันออกไปตามระดับภาษา ฐานะของบุคคลในสังคมไทยแบ่งตามวัยวุฒิและชาติวุฒิได้ดังนี้ 1.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1