ความรู้เบื้องต้นเกี่ยวกับเซต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เซตคืออะไร?

เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ

ทำไมต้องเรียนเซต

เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น

ความรู้เบื้องต้นเกี่ยวกับเซต

เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น

สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ a,e,i,o,u

การเขียนเซต

การเขียนเซตจะเขียนได้ 2 วิธี

1.) เขียนแบบแจกแจงสมาชิก คือการเขียนสมาชิกไว้ในวงเล็บปีกกา “{ }”แล้วคั่นสมาชิกแต่ละตัวด้วย “,” เช่น

ให้ A แทนเซตของจำนวนนับที่น้อยกว่า 10

ดังนั้น A = {1,2,3,4,5,6,7,8,9} 

2.) เขียนแบบบอกเงื่อนไข คือการกำหนดตัวแปรขึ้นมาแล้วใส่เงื่อนไขให้ตัวแปรนั้น เช่น

A = {x|x ∈ N และ x < 10}  จากข้อความนี้ แปลได้ว่า A เท่ากับ x โดยที่ x เป็นสมาชิกของจำนวนนับและ x น้อยกว่า 10 

“|” แทนคำว่า โดยที่ หรืออาจจะใช้ “:” แทนคำว่าโดยที่ก็ได้

ประเภทของเซต

1.) เซตว่าง (Empty set) คือเซตที่มีจำนวนสมาชิกเป็น 0 โดยจะใช้สัญลักษณ์ Ø หรือ { } แทน เซตว่าง

เช่น ให้ A แทนเซตของจำนวนเดือนที่มี 32 วัน เราจะเห็นว่าไม่มีเดือนไหนที่มี 32 วัน ดังนั้น A = Ø หรือ A = { }

2.) เซตจำกัด (Finite set) คือ เซตที่สามารถระบุจำนวนสมาชิกได้

เช่น เซตของของจำนวนนับที่น้อยกว่า 10  สามารถเขียนได้ดังนี้ {1,2,3,4,5,6,7,8,9}  จะเห็นว่ามีจำนวนสมาชิกเท่ากับ 9

**เซตว่าง เป็นเซตจำกัด เนื่องจากมีจำนวนสมาชิกเท่ากับ 0**

3.) เซตอนันต์ (infinite set) คือ เซตที่ไม่สามารถระบุจำนวนสมาชิกได้ เช่น

เซตของจำนวนนับ {1,2,3,…} เป็นเซตอนันต์ เพราะเราไม่สามารถบอกได้ว่ามีจำนวนสมาชิกเท่าไหร่

เซตของจำนวนเต็ม {…,-3,-2,-1,0,1,2,3,…} เป็นเซตอนันต์

**{1,2,3,…} หมายถึง มีจำนวนอื่นต่อไปอีกเรื่อยๆ

 

ตัวอย่าง

 

1.)

 

 

 

 

A = {1,2,4,5,8}

จากรูปจะได้ว่า

>> สมาชิกของ A ประกอบด้วย 1,2,4,5,8

>> จำนวนสมาชิกของ A เท่ากับ 5

>> A เป็นเซตจำกัด

 

2.)

 

 

 

 

 

A = {1,3,5}           B = {2,4,6}

จากรูป สามารถบอกได้ว่า

>> 1,3,5 เป็นสมาชิกของ A แต่ไม่เป็นสมาชิกของ B

>> 2,4,6 เป็นสมาชิกของ B แต่ไม่เป็นสมาชิกของ A

>> 0,7,8,9 ไม่เป็นสมาชิก ของ A และไม่เป็นสมาชิกของ B

>> A และ B เป็นเซตจำกัด

>> 0,1,2,3,4,5,6,7,8,9 เป็นสมาชิก ของ U

โดยที่ U คือเอกภพสัมพัทธ์

 

3.)ให้ B เป็นเซตของจำนวนเต็มคู่ที่มากกว่า 0

จะได้ว่า B = {2,4,6,8,…} จะเห็นว่าเราไม่สามารถระบุจำนวนสมาชิกของเซต B ได้ ดังนั้น B เป็นเซตอนันต์

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ความเป็นมาของบทละครเรื่องรามเกียรติ์ ตอน นารายณ์ปราบนนทก

บทละครเรื่องรามเกียรติ์ เป็นวรรณคดีที่สำคัญและมีอิทธิพลต่อความคิดความเชื่อของคนไทยมาอย่างยาวนาน น้อง ๆ หลายคนก็คงจะรู้จักและเคยเห็นผ่านตากันมาบ้างตามสื่อต่าง ๆ แต่ทราบไหมคะว่าวรรณคดีเรื่องนี้มีที่มาอย่างไร และทำไมถึงมาเป็นบทละคร มีความสำคัญอย่างไรจึงมาอยู่ในบทเรียนวิชาภาษาไทย เราไปดูพร้อม ๆ กันเลยค่ะ   ความเป็นมาของบทละครเรื่องรามเกียรติ์     รามเกียรติ์ เป็นวรรณคดีที่ได้รับอิทธิพลและมีเค้าโครงเรื่องมาจากมหากาพย์รามายณะที่ฤๅษีวาลมีกิ ชาวอินเดียเป็นคนแต่งขึ้นเป็นภาษาสันสกฤต แม้จะไม่ปรากฏปีที่วรรณคดีเรื่องดังกล่าวเข้ามาเผยแผ่ในไทยอย่างแน่ชัด แต่ด้วยจากหลักฐานทางประวัติศาสตร์ก็ทำให้นักวิชาการคาดการณ์ว่าเป็นช่วงสมัยอยุธยา และในสมัยกรุงธนบุรี พระเจ้าตากสินได้ทรงประพันธ์เพื่อให้ละครหลวงเล่น ก่อนที่ต่อมาสมเด็จพระพุทธยอดฟ้าจุฬาโลก รัชกาลที่

ร้อยละ

การคำนวณร้อยละในชีวิตประจำวัน

บทความนี้เราจะได้เรียนรู้ความหมายของคำว่าร้อยละ หรือเปอร์เซ็นต์ รวมทั้งความสัมพันธ์ของอัตราส่วนที่คิดคำนวณเป็นร้อยละ หรือเปอร์เซ็นต์ ที่จะทำให้เราสามารถนำไปใช้ได้จริงในชีวิตประจำวัน

อนุกรมเลขคณิต

อนุกรมเลขคณิต

อนุกรมเลขคณิต อนุกรมเลขคณิต คือการนำลำดับเลขคณิตแต่ละพจน์มาบวกกัน โดย เขียนแทนด้วย จากบทความ “สัญลักษณ์การบวก” ซึ่งเป็นการลดรูปการเขียนจำนวนหลายจำนวนบวกกัน ในบทความนี้จะพูดถึงการบวกของลำดับเลขคณิต การหาผลบวก สูตรสำหรับการหาผลบวกเลขคณิต สูตรอนุกรมเลขคณิต สูตรของอนุกรมเลขคณิตมีอยู่ 2 สูตร ดังนี้ 1)   โดยที่ d คือ ผลต่างร่วม 2)   โดยจะใช้สูตรนี้ก็ต่อเมื่อรู้ค่า

พระบรมราโชวาท จดหมายของร.5ที่เขียนถึงพระโอรส

พระบรมราโชวาท เป็นจดหมายร้อยแก้วที่พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวได้เขียนให้พระโอรสทั้ง 4 พระองค์ก่อนจะไปศึกษาต่างประเทศ เหตุใดเนื้อความในจดหมายถึงกลายเป็นวรรณคดีอันทรงคุณค่าให้คนรุ่นหลังได้ศึกษา บทเรียนในวันนี้จะพาไปเรียนรู้ประวัติความเป็นมาและเนื้อหาโดยรวมของเนื้อความเพื่อให้เข้าใจถึงคำสอนและข้อคิดจากพระบรมราโชวาทของพระมหากษัตริย์ในแง่มุมของพ่อสอนลูก จะเป็นอย่างไรไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ประวัติความเป็นมา     วรรณคดีเรื่องพระบรมราโชวาท เป็นคำสั่งสอนของรัชกาลที่ 5 พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวที่มีต่อพระราชโอรสทั้ง 4 พระองค์ที่กำลังจะเดินทางไปศึกษาต่อต่างประเทศ พระองค์จึงมีพระบรมราโชวาทเพื่อสั่งสอนและตักเตือนพระราชโอรส ซึ่งในการส่งไปศึกษาต่อในครั้งนี้ พระองค์ทรงเล็งเห็นว่า การศึกษาเป็นรากฐานของการพัฒนาประชาชนและประเทศชาติ    

สัดส่วน

บทความนี้ได้รวบรวมความรู้เรื่อง สัดส่วน รวมทั้งโจทย์ปัญหาเกี่ยวกับสัดส่วน ซึ่งได้รวบรวมเนื้อหาและเขียนอธิบายไว้อย่างชัดเจน รวมถึงมีคลิปวิดีโอการสอน เพื่ออำนวยความสะดวกให้กับน้องๆ สามารถเรียนรู้ได้ทุกที่ทุกเวลา แต่ก่อนจะเรียนรู้เรื่องสัดส่วนนั้น น้องๆจำเป็นต้องมีความรู้ในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ อัตราส่วนของจำนวนหลายๆจำนวน ⇐⇐ สัดส่วน สัดส่วน คือ ประโยคที่แสดงการเท่ากันของอัตราส่วนสองอัตราส่วน อัตราส่วนทั้งสองมีความสัมพันธ์ไปในทิศทางเดียวกันหรือในทิศทางตรงกันข้ามก็ได้ ชนิดของสัดส่วน สัดส่วนมี 2 ชนิด คือ สัดส่วนตรง และ สัดส่วนผกผัน  

การบอกลักษณะต่างๆ โดยใช้คำคุณศัพท์ Profile

การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิค การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์ (Descriptive Adjective) กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า    ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1