การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม เป็นการแยกตัวประกอบของสมการเพื่อให้ง่ายต่อการหาคำตอบของสมการที่จะต้องเรียนในเนื้อหาถัดไป ในบทความนี้จะพูดถึงพหุนามดีกรี 2 ตัวแปรเดียว

พหุนามดีกรี 2 คือ พหุนามที่มีเลขยกกำลังสูงสุด คือ 2

พหุนามดีกรี 2 ตัวแปรเดียว คือ พหุนามที่มีเลขยกกำลังสูงสุดคือ 2 และ มีตัวแปร 1 ตัว เขียนอยู่ในรูป ax² + bx + c โดยที่ a, b และ c เป็นค่าคงที่ และ a ≠ 0

ค่าคงที่ คือ ค่าที่ไม่เปลี่ยนแปลง พูดง่ายๆก็คือ เป็นตัวเลขตัวหนึ่ง

สาเหตุที่ a ≠ 0 เพราะ ถ้าเราสมมติให้ a เป็น 0 เราจะได้ว่า 0x² + bx + c = bx + c จะเห็นว่า เมื่อ a = 0 แล้ว ดีกรีสูงสุดก็คือ 1 มันจะกลายเป็น พหุนามดีกรี 1 ดังนั้น a เลยเป็น 0 ไม่ได้นั่นเองค่ะ

แต่ b และ c เป็น 0 ได้ เพราะ ดีกรียังคงเป็น 2 ก็ยังคงเป็นพหุนามดีกรี 2 อยู่

 

ตัวอย่าง พหุนามดีกรี 2

x² + 2x + 1 จะได้ว่า a = 1, b = 2, c = 1 และเลขยกกำลังสูงสุดคือ 2

2x² + 3x + 5 จะได้ว่า a = 2, b = 3, c = เลขยกกำลังสูงสุดคือ 2

 

เราลองสังเกต (x+2)(x+5) เราลองกระจายดู จะได้ว่า

การแยกตัวประกอบพหุนาม

ทำย้อนกลับ x² + 7x + 10 เราต้องคิดก่อนว่า ตัวเลข 2 ตัวใดที่คูณกันแล้วได้ 10 บวกกันแล้วได้ 7

10 = 1 × 10 = 2 × 5 เลขที่ คูณกันได้ 10 มี 2 กรณี คือ 1 กับ 10 และ 2 กับ 5

จากนั้นเรานำ เลขทั้ง 2 กรณี มาพิจารณาว่า กรณีไหนที่บวกกันแล้ว ได้เท่ากับ 7

1 + 10 = 11

2 + 5 = 7

ดังนั้น 2 กับ 5 คือตัวที่ บวกกันแล้วได้ 7 คูณกันแล้วได้ 10

ดังนั้น x² + 7x + 10 = (x+2)(x+5)

พหุนามในรูปกำลังสองสมบูรณ์และผลต่างกำลังสอง

การแยกตัวประกอบในรูปกำลังสองสมบูรณ์

แทน หน้า

แทน หลัง

(น + ล)² = น² + 2นล + ล²

(น – ล)² = น² – 2นล + ล²

ตัวอย่าง

1.) (x + 3)² = x² + 2(3)x + 3² = x² + 6x + 9

2.) (2x – 5) = (2x)² – 2(2)(5)x + 5² = 4x² – 20x +25

การแยกตัวประกอบในรูปผลต่างกำลังสอง

น² – ล² = (น – ล)(น + ล)

ตัวอย่าง

x² – 2² = (x – 2)(x + 2)

x² – 16 = (x – 4)(x + 4)

 

ตัวอย่าง การแยกตัวประกอบพหุนาม กรณี a = 1

กรณี a = 1 พหุนามจะอยู่ในรูป x² + bx + c โดยที่ b, c เป็นค่าคงที่ใดๆ เราจะหาจำนวน 2 จำนวนที่คูณกันแล้วเท่ากับ c และ บวกกันแล้วเท่ากับ b

1.) x² + 5x + 4

วิธีทำ จากโจทย์ได้ว่า a = 1, b = 5 และ c = 4

พิจารณาว่า จำนวน 2 จำนวนใด ที่คูณกันแล้วได้ 4

4 = 1 × 4 = 2 × 2

จากนั้นพิจารณาว่า กรณีไหนที่ บวกกันแล้วได้ 5

จะได้ว่า 1 + 4 = 5

ดังนั้น x² + 5x + 4 = (x + 1)(x + 4)

น้องๆสามารถตรวจคำตอบได้ โดยการคูณกระจาย ถ้ากระจายเสร็จแล้วได้ตรงกับโจทย์แสดงว่าแยกตัวประกอบถูกแล้วนั่นเอง

2.) x² – 2x +1

วิธีทำ จากโจทย์ ได้ว่า  a = 1, b = -2 และ c = 1

พิจารณาว่า จำนวนใดคูณกันแล้วได้เท่ากับ 1 และบวกกันได้เท่ากับ -2

1 = 1 × 1 = (-1) × (-1)

จากนั้น พิจารณาว่า กรณีใดที่บวกกันแล้วได้ -2

จะได้ว่า (-1) + (-1) = -2

ดังนั้น x² – 2x +1 = (x – 1)(x – 1)

 

3.) x² – 2x -35

วิธีทำ จากโจทย์ จะได้ว่า a = 1, b = -2 และ c = -35

พิจารณา จำนวนที่ คูณกันแล้วได้ -35 การที่คูณแล้วจะได้ -35 นั้น ตัวหนึ่งต้องเป็นจำนวนบวก และอีกตัวต้องเป็นจำนวนลบ

-35 = (-1) × 35 = 1 × (-35) = (-5) × 7 = 5 × (-7)  ได้ 4 กรณี

จากนั้นพิจารณากรณีทั้ง 4 ว่ากรณีไหนบวกกันแล้วได้เท่ากับ -2

จะได้ว่า (-7) + 5 = -2

ดังนั้น  x² – 2x -35 = (x – 7)(x + 2)

ตัวอย่าง การแยกตัวประกอบพหุนาม กรณี a ≠ 1

 

1.) 2x² + 5x + 2

วิธีทำ จากโจทย์จะได้ a = 2, b = 5, c = 2

การแยกตัวประกอบพหุนาม

2.) -x² – 4x +5

วิธีทำ a = -1, b = -4, c = 5

การแยกตัวประกอบพหุนาม

3.) 6x² + 7x + 2

วิธีทำ  a = 6, b = 7, c = 2

การแยกตัวประกอบพหุนาม

 

 วีดิโอการแยกตัวประกอบพุหนาม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สำนวนไทยที่เราควรรู้ และตัวอย่างการนำไปใช้ในชีวิตประจำวัน

น้อง ๆ เคยเป็นกันหรือเปล่าคะ เวลาที่อยากจะพูดอะไรสักอย่างแต่มันช่างยาวเหลือเกิน กว่าจะพูดออกมาหมดนอกจากคนฟังจะเบื่อแล้วยังอาจทำให้เขาไม่สนใจคำพูดของเราเลยก็เป็นไปได้ เพราะอย่างนั้นแหละค่ะในภาษาไทยของเราจึงต้องมีสิ่งที่เรียกว่าสำนวนขึ้นมาเพื่อใช้บอกเล่าเรื่องราวที่ถูกกลั่นกรองออกมาจนได้คำที่สละสลวย รวมใจความยาว ๆ ให้สั้นลง ทำให้เราไม่ต้องพูดอะไรให้ยืดยาวอีกต่อไป บทเรียนในวันนี้จะพาน้อง ๆ ไปทบทวนความรู้เรื่อง สำนวนไทย รวมถึงตัวอย่างสำนวนน่ารู้ในชีวิตประจำวันเพิ่มเติมด้วยค่ะ จะมีอะไรบ้างนั้น ไปดูกันเลย   ความหมายและลักษณะของ สำนวนไทย   สำนวน หมายถึง ถ้อยคำหรือสำนวนพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น

ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.)

             ตัวหารร่วมมาก (ห.ร.ม.) ตัวหารร่วมมาก (ห.ร.ม.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น  เป็นการหาตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น ในบทความนี้ได้รวบรวมวิธี การหา ห.ร.ม. ไว้ทั้งหมด 3 วิธี น้องๆอาจคุ้นชินกับ การหา ห.ร.ม. โดยวิธีตั้งหาร แต่น้องๆทราบหรือไม่ว่าวิธีการหา ห.ร.ม. มีวิธีการดังต่อไปนี้ การหา ห.ร.ม. โดยการหาผลคูณร่วม การหา ห.ร.ม.

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า  = {2, 3, 8}

ศึกษาตัวบทและคุณค่า คัมภีร์ฉันทศาสตร์ แพทยศาสตร์สงเคราะห์

จากบทเรียนครั้งที่แล้วที่เราได้เรียนรู้เกี่ยวความเป็นมาและเนื้อหาโดยสังเขปของ คัมภีร์ฉันทศาสตร์ แพทย์ศาสตร์สงเคราะห์ กันไปแล้ว เราได้รู้ถึงที่มาความเป็นไปของวรรณคดีที่เป็นตำราแพทย์ในอดีตรวมถึงเนื้อหา ฉะนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกเกี่ยวกับตัวบทเพื่อให้รู้จักกับวรรณคดีเรื่องนี้กันมากขึ้น ว่าเหตุใดจึงเป็นตำราแพทย์ที่ได้มาอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   ตัวบทเด่น ๆ ในคัมภีร์ฉันทศาสตร์ แพทย์ศาสตร์สงเคราะห์     ถอดความ เปรียบร่างกายของหญิงและชายเป็นกายนคร จิตใจเปรียบเหมือนกษัตริย์ซึ่งเป็นผู้ครอบครองสมบัติอันยิ่งใหญ่หรือก็คือร่างกาย ข้าศึกเปรียบได้กับโรคที่ทำลายร่างกายเรา พทย์เปรียบได้กับทหาร มีความชำนาญ เวลาที่ข้าศึกมาหรือเกิดโรคภัยขึ้นก็อย่างวางใจ แผ่ลามไปทุกแห่ง

NokAcademy_ ม.6 Modlas in the Past

Modals in the Past

  สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modals in the Past “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า   ทบทวน Modal Verbs  Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

Profile where + preposition P6

การใช้ประโยค Where’s the + (Building) + ? It’s + (Preposition Of Place)

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาทุกคนไปเรียนรู้เกี่ยวกับ ประโยค การถามทิศทาง แต่เอ้ะ Where is the building? แปลว่า ตึกอยู่ที่ไหน ประโยคนี้เป็นการถามทางแบบห้วนๆ ที่ใช้กับคนที่เราคุ้นชินหรือคนที่เรารู้จัก แต่หากนักเรียนต้องอยู่ในสถานการณ์ที่ต้องถามกับคนแปลกหน้าโดยเฉพาะฝรั่ง คงต้องมาฝึกถามให้สุภาพมากขึ้น ดังนั้นจึงต้องมีการเกริ่นขึ้นก่อนที่เราจะถามนั่นเองค่ะ ซึ่งนักเรียนที่รักทุกคนได้เรียนรู้ในบทเรียนนี้นะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบการถามทิศทาง   โครงสร้างประโยคถามแบบตรงๆ (Direct Question) “

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1