การสร้างตารางค่าความจริง

บทความนี้เป็นเนื้อหาเกี่ยวกับการสร้างตารางค่าความจริงของประพจน์ เป็นเนื้อหาที่ไม่ยากมากหลังจากน้องๆได้อ่านบทความนี้แล้ว น้องๆจะสามารถสร้างตารางค่าความจริงได้ สามารถบอกได้ว่าประพจน์แต่ละประพจน์เป็นจริงได้กี่กรณีและเป็นเท็จได้กี่กรณี และจะทำให้น้องเรียนเนื้อหาเรื่องต่อไปได้ง่ายยิ่งขึ้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การสร้างตารางค่าความจริงเป็นการทำความเข้าใจว่าประพจน์จะสามารถเป็นจริงหรือเท็จได้กี่กรณี ถ้าเป็นการบรรยายว่าตัวเชื่อมแต่ละตัวเป็นจริงกรณีไหนและเท็จกรณีไหนอาจจะทำให้น้องๆมองภาพไม่ค่อยออก การทำตารางจะทำให้เห็นภาพง่ายขึ้น เราไปดูเนื้อหาการสร้างตารางค่าความจริงกันเลยค่ะ

การสร้างตารางค่าความจริง

กรณีที่มีประพจน์ 1 ประพจน์ จะมีค่าความจริงที่เป็นไปได้ 2 กรณี ดังนี้

กรณีที่มีประพจน์ 2 ประพจน์ จะมีค่าความจริงที่เป็นไปได้ 4 กรณี ดังนี้

กรณีที่มีประพจน์ 3 ประพจน์ จะมีค่าความจริงที่เป็นไปได้ 8 กรณี ดังนี้

จากทั้ง 3 กรณีแรก เราจะได้ว่า

กรณีที่มีประพจน์ a ประพจน์ จะมีค่าความจริงที่เป็นไปได้ 2ª กรณี

การสร้างตารางค่าความจริงของประพจน์ที่เชื่อมด้วย “หรือ”

กรณี “หรือ” ถ้ามีตัวใดตัวหนึ่งเป็นจริง ประพจน์ p∨q จะเป็นจริงทันที

เช่น  ก. 3+2 = 5 หรือ 3>7

สร้างตารางค่าความจริงได้ดังนี้

ดังนั้น ประพจน์ 3+2 =5 หรือ 3>7 มีค่าความจริงเป็นจริง (T)

ข. หินเป็นสิ่งมีชีวิต หรือ เชียงใหม่อยู่ภาคใต้ของประเทศไทย

สร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์ หินเป็นสิ่งมีชีวิตหรือเชียงใหม่อยู่ภาคใต้ของประเทศไทย มีค่าความจริงเป็นเท็จ(F)

การสร้างตารางค่าความจริงของประพจน์ที่เชื่อมด้วย “และ”

เช่น  ก. จำนวนนับมีค่ามากกว่า 0 และ 1>0

สร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์จำนวนนับมีค่ามากกว่า0 และ 1>0 มีค่าความจริงเป็นจริง

ข.) 2 หาร 20 ลงตัว และ 2 เป็นจำนวนคี่

สร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์ 2 หาร 20ลงตัว และ 2 เป็นจำนวนคี่ มีค่าความจริงเป็นเท็จ

การสร้างตารางค่าความจริงของประพจน์ที่เชื่อมด้วย “ถ้า…แล้ว…”

เช่น ก. ถ้า 2 เป็นจำนวนคี่ แล้ว ½ = 0.5

สามารถสร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์ ถ้า 2 เป็นจำนวนคี่ แล้ว ½ = 0.5 มีค่าความจริงเป็นจริง

ข. 1<2 แล้ว -1>2

สามารถสร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์ 1<2 แล้ว -1>2 มีค่าความจริงเป็นเท็จ

การสร้างตารางค่าความจริงของประพจน์ที่เชื่อมด้วย “ก็ต่อเมื่อ”

ตัวอย่างการสร้างตารางค่าความจริง

 

1.) สร้างตารางค่าความจริงของประพจน์ (p→q)∨r

วิธีทำ

  •  ทำในวงเล็บก่อน จะได้ค่าความจริง p→q ตามตาราง
  • จากนั้นนำค่าความจริงที่ได้ใน ช่อง p→q ไปเชื่อมกับ r จะได้ค่าความจริงตามตารางช่อง (p→q)∨r

 

2.) สร้างตารางค่าความจริงของประพจน์ (p∧q)∨∼p

วิธีทำ

  • ทำจากข้างในวงเล็บ คือพิจารณา (p∧q) 
  • พอได้ค่าความจริงมาแล้วก็มาพิจารณา (p∧q)∨∼p ได้ค่าความจริงดังตาราง

3.) จงสร้างตารางค่าความจริงของประพจน์ (p→q)↔(p∨q)

วิธีทำ

  • อาจจะเริ่มพิจารณาจาก (p→q) แล้วไปพิจารณา (p∨q)
  • พอได้ค่าความจริงของทั้งสองประพจน์แล้ว เราจะพิจารณา (p→q)↔(p∨q) แล้วจะได้ตารางค่าความจริง ดังตาราง

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ค่าสัมบูรณ์

ค่าสัมบูรณ์

ค่าสัมบูรณ์ ค่าสัมบูรณ์  หรือ Absolute คือค่าของระยะทางจากศูนย์ไปยังจุดที่เราสนใจ เช่น ระยะทางจากจุด 0 ถึง -5 มีระยะห่างเท่ากับ 5 เนื่องจากค่าสัมบูรณ์เอาไว้บอกระยะห่าง ดังนั้นค่าสัมบูรณ์จะมีค่าเป็นบวกหรือศูนย์เท่านั้น ไม่สามารถเป็นลบได้ นิยามของค่าสัมบูรณ์ ให้ a เป็นจำนวนจริงใดๆ จะได้ว่า และ   น้องๆอาจจะงงๆใช่ไหมคะ ลองมาดูตัวอย่างสักนิดนึงดีกว่าค่ะ เช่น เพราะ

แนะนำอสมการเชิงเส้นตัวแปรเดียว

แนะนำอสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการ แนะนำอสมการเชิงเส้นตัวแปรเดียว ซึ่งอสมการ เป็นประโยคที่แสดงถึงการไม่เท่ากัน โดยมีวิธีการหาคำตอบคล้ายๆกับสมการ น้องๆสามารถศึกษาบทความเรื่องโจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว เพื่อศึกษาวิธีการแก้สมการและนำมาประยุกต์ใช้กับการแก้อสมการเพิ่มเติมได้ที่  ⇒⇒โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว⇐⇐ แนะนำอสมการเชิงเส้นตัวแปรเดียว        อสมการ (inequality) เป็นประโยคที่แสดงถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  <, >, ≤, ≥ หรือ ≠  แสดงความสัมพันธ์         อสมการเชิงเส้นตัวแปรเดียว

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y   ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

โจทย์ปัญหาเลขยกกำลัง

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง          เราสามารถนำความรู้เกี่ยวกับเลขยกกำลังที่เรียนมาไม่ว่าจะเป็น การคูณ การหาร เลขยกกำลัง และการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก ไปประยุกต์ใช้ในการแก้ โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง รวมทั้งไปประยุกต์ใช้ในชีวิตประจำวันได้มากมาย  ในบทความนี้จะกล่าวถึงการนำความรู้เกี่ยวกับเลขยกกำลังไปใช้แก้โจทย์ปัญหาคณิตศาสตร์ ดังตัวอย่างต่อไปนี้ ตัวอย่างที่ 1 – 3 ตัวอย่างที่ 1  เด็กชายศิระนำแท่งลูกบาศก์ไม้ขนาด 5³ ลูกบาศก์เซนติเมตร  มาจัดวางในลูกบาศก์ใหญ่ที่มีความยาวของแต่ละด้านเป็น

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

like_dislike + การเขียนข้อมูลเกี่ยวกับตนเอง

การเขียนบรรยายความรู้สึกของตนเอง like/dislike + การเขียนข้อมูลเกี่ยวกับตนเอง

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การเขียนบรรยายความรู้สึกของตนเอง like/dislike + การเขียนข้อมูลเกี่ยวกับตนเอง หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go! ถาม-ตอบก่อนเรียน หากมีคนถามว่า What do you like doing? หรือ What do you dislike doing? (คุณชอบหรือไม่ชอบทำอะไร) นักเรียนสามารถแต่งประโยคเพื่อตอบคำถาม

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1