การสร้างตารางค่าความจริง

บทความนี้เป็นเนื้อหาเกี่ยวกับการสร้างตารางค่าความจริงของประพจน์ เป็นเนื้อหาที่ไม่ยากมากหลังจากน้องๆได้อ่านบทความนี้แล้ว น้องๆจะสามารถสร้างตารางค่าความจริงได้ สามารถบอกได้ว่าประพจน์แต่ละประพจน์เป็นจริงได้กี่กรณีและเป็นเท็จได้กี่กรณี และจะทำให้น้องเรียนเนื้อหาเรื่องต่อไปได้ง่ายยิ่งขึ้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การสร้างตารางค่าความจริงเป็นการทำความเข้าใจว่าประพจน์จะสามารถเป็นจริงหรือเท็จได้กี่กรณี ถ้าเป็นการบรรยายว่าตัวเชื่อมแต่ละตัวเป็นจริงกรณีไหนและเท็จกรณีไหนอาจจะทำให้น้องๆมองภาพไม่ค่อยออก การทำตารางจะทำให้เห็นภาพง่ายขึ้น เราไปดูเนื้อหาการสร้างตารางค่าความจริงกันเลยค่ะ

การสร้างตารางค่าความจริง

กรณีที่มีประพจน์ 1 ประพจน์ จะมีค่าความจริงที่เป็นไปได้ 2 กรณี ดังนี้

กรณีที่มีประพจน์ 2 ประพจน์ จะมีค่าความจริงที่เป็นไปได้ 4 กรณี ดังนี้

กรณีที่มีประพจน์ 3 ประพจน์ จะมีค่าความจริงที่เป็นไปได้ 8 กรณี ดังนี้

จากทั้ง 3 กรณีแรก เราจะได้ว่า

กรณีที่มีประพจน์ a ประพจน์ จะมีค่าความจริงที่เป็นไปได้ 2ª กรณี

การสร้างตารางค่าความจริงของประพจน์ที่เชื่อมด้วย “หรือ”

กรณี “หรือ” ถ้ามีตัวใดตัวหนึ่งเป็นจริง ประพจน์ p∨q จะเป็นจริงทันที

เช่น  ก. 3+2 = 5 หรือ 3>7

สร้างตารางค่าความจริงได้ดังนี้

ดังนั้น ประพจน์ 3+2 =5 หรือ 3>7 มีค่าความจริงเป็นจริง (T)

ข. หินเป็นสิ่งมีชีวิต หรือ เชียงใหม่อยู่ภาคใต้ของประเทศไทย

สร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์ หินเป็นสิ่งมีชีวิตหรือเชียงใหม่อยู่ภาคใต้ของประเทศไทย มีค่าความจริงเป็นเท็จ(F)

การสร้างตารางค่าความจริงของประพจน์ที่เชื่อมด้วย “และ”

เช่น  ก. จำนวนนับมีค่ามากกว่า 0 และ 1>0

สร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์จำนวนนับมีค่ามากกว่า0 และ 1>0 มีค่าความจริงเป็นจริง

ข.) 2 หาร 20 ลงตัว และ 2 เป็นจำนวนคี่

สร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์ 2 หาร 20ลงตัว และ 2 เป็นจำนวนคี่ มีค่าความจริงเป็นเท็จ

การสร้างตารางค่าความจริงของประพจน์ที่เชื่อมด้วย “ถ้า…แล้ว…”

เช่น ก. ถ้า 2 เป็นจำนวนคี่ แล้ว ½ = 0.5

สามารถสร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์ ถ้า 2 เป็นจำนวนคี่ แล้ว ½ = 0.5 มีค่าความจริงเป็นจริง

ข. 1<2 แล้ว -1>2

สามารถสร้างตารางค่าความจริงได้ ดังนี้

ดังนั้น ประพจน์ 1<2 แล้ว -1>2 มีค่าความจริงเป็นเท็จ

การสร้างตารางค่าความจริงของประพจน์ที่เชื่อมด้วย “ก็ต่อเมื่อ”

ตัวอย่างการสร้างตารางค่าความจริง

 

1.) สร้างตารางค่าความจริงของประพจน์ (p→q)∨r

วิธีทำ

  •  ทำในวงเล็บก่อน จะได้ค่าความจริง p→q ตามตาราง
  • จากนั้นนำค่าความจริงที่ได้ใน ช่อง p→q ไปเชื่อมกับ r จะได้ค่าความจริงตามตารางช่อง (p→q)∨r

 

2.) สร้างตารางค่าความจริงของประพจน์ (p∧q)∨∼p

วิธีทำ

  • ทำจากข้างในวงเล็บ คือพิจารณา (p∧q) 
  • พอได้ค่าความจริงมาแล้วก็มาพิจารณา (p∧q)∨∼p ได้ค่าความจริงดังตาราง

3.) จงสร้างตารางค่าความจริงของประพจน์ (p→q)↔(p∨q)

วิธีทำ

  • อาจจะเริ่มพิจารณาจาก (p→q) แล้วไปพิจารณา (p∨q)
  • พอได้ค่าความจริงของทั้งสองประพจน์แล้ว เราจะพิจารณา (p→q)↔(p∨q) แล้วจะได้ตารางค่าความจริง ดังตาราง

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof  จากรูป

เรียนรู้กลวิธีการสรรคำ ความสวยงามทางภาษา

ในการแต่งบทประพันธ์ประเภทต่าง ๆ โดยเฉพาะบทร้อยกรอง การสรรคำ จะช่วยทำให้บทประพันธ์นั้น ๆ มีความไพเราะมากขึ้น บทเรียนเรื่องการเสริมสร้างความรู้ทางภาษาไทยในวันนี้จะพาน้อง ๆ ไปศึกษาเกี่ยวกับการสรรคำ ว่ามีความหมายและวิธีการเลือกคำมาใช้อย่างได้บ้าง ไปดูกันเลยค่ะ   การสรรคำ ความหมายและความสำคัญ     การสรรคำ คือ การเลือกใช้คำให้สื่อความคิด ความเข้าใจ ความรู้สึก และอารมณ์ได้อย่างงดงาม โดยคำนึงถึงความงามด้านเสียง โวหาร

วงกลม

วงกลม

วงกลม วงกลม ประกอบด้วยจุดศูนย์กลาง (center) เส้นผ่านศูนย์กลาง และรัศมี (radius) สมการรูปแบบมาตรฐานของวงกลม สมการรูปแบบมาตรฐานของวงกลมที่มีจุดศูนย์กลางที่ (h, k) คือ (x-h)² + (y-k)² = r² จากสมการ จะได้ว่า มีจุดศูนย์กลางที่ (h, k) และรัศมี r จะเห็นว่าถ้าเรารู้สมการมาตรฐานเราจะรู้รัศมี

P5 NokAcademy_การเรียนเกี่ยวกับทิศทางและการถามทาง

การเรียนเกี่ยวกับทิศทางและการถามทาง

สวัสดีค่ะนักเรียนป.5 ที่น่ารักทุกคน เคยมั้ยที่เราเจอฝรั่งถามทางแล้วตอบไม่ได้ ทำได้แค่ชี้ๆ แล้วก็บ๊ายบาย หากทุกคนเคยเจอปัญหานี้ ต้องท่องศัพท์และรู้โครงสร้างประโยคที่สำคัญในการถามทางแล้วล่ะ  หากพร้อมแล้วก็ไปลุยกันเลย กับหัวข้อ การเรียนเกี่ยวกับทิศทางและการถามทาง   มาเริ่มกับการ “ถาม-ตอบเกี่ยวกับทิศทาง”   วิธีการถามตอบ: โครงสร้าง:  How can I get to…(name of the place)..? แปล

NokAcademy_บอกเวลาเป็นภาษาอังกฤษ

เรียนรู้เกี่ยวกับการบอกเวลา

Hi guys! สวัสดีค่ะนักเรียนชั้น ม.1 ที่น่ารักทุกคน วันนี้เราจะไป เรียนรู้เกี่ยวกับการบอกเวลา กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลย Let’s go! การแบ่งประเภท     ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษา นะคะ  ดังตัวอย่างดังต่อไปนี้  

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง การวัดความยาวส่วนโค้ง ในบทความนี้จะเป็นการวัดความยาวของวงกลม 1 หน่วย วงกลมหนึ่งหน่วย คือวงกลมที่มีจุดศูนย์กลางที่จุดกำเนิด และมีรัศมียาว 1 หน่วย จากสูตรของเส้นรอบวง คือ 2r ดังนั้นวงกลมหนึ่งหน่วย จะมีเส้นรอบวงยาว 2 และครึ่งวงกลมยาว   จุดปลายส่วนโค้ง   จากรูป จะได้ว่าจุด P เป็นจุดปลายส่วนโค้ง   จากที่เราได้ทำความรู้จักกับวงกลมหนึ่งหน่วยและจุดปลายส่วนโค้งแล้ว

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1