การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การดำเนินการของเซต คือ การนำเซตที่มีอยู่แล้วมาดำเนินการเพื่อให้ได้เซตใหม่ เราจะใช้แผนภาพเวนน์-ออยเลอร์เพื่อช่วยให้เห็นภาพและเข้าใจได้ง่ายขึ้น

การเขียนแผนภาพ เราจะใช้เอกภพสัมพัทธ์ U ด้วยรูปสี่เหลี่ยมผืนผ้า ส่วนเซตที่อยู่ใน U เราอาจจะเขียนแทนด้วยวงกลม วงรี หรือรูปอื่นๆ เช่น

การยูเนียน (union)

เราจะใช้สัญลักษณ์ ∪ แทนการยูเนียน

A ∪ B อ่านว่า A ยูเนียน B คือการเอาสมาชิกทั้งหมดในเซต A รวมกับ สมาชิกทั้งหมดในเซต B

เช่น ให้ A = {1,2,3} B = {1,a,b,c} จะได้ A∪B = {1,2,3,a,b,c}

สมบัติของการยูเนียน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∪Ø = A

2.) A∪B = B∪A

3.) A∪(B∪C) = (A∪B)∪C

4.) A∪A = A

การอินเตอร์เซกชัน (intersection)

เราจะใช้สัญลักษณ์ ∩ แทนการอินเตอร์เซกชัน

A∩B อ่านว่า A อินเตอร์เซกชัน B คือ เซตที่สร้างมาจากส่วนที่ A กับ B มีสมาชิกร่วมกัน

เช่น A = {1,2,3,4,5}  B = {2,4,5,a,b} จะได้ว่า A∩B = {2,4,5}

A∩B คือส่วนที่ A กับ B ซ้ำกัน

สมบัติของการอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∩Ø = Ø

2.) A∩U = A

3.) A∩B = B∩A

4.) (A∩B)∩C = A∩(B∩C) 

5.) A∩A = A

ตัวอย่างการยูเนียนและอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์ U

ให้แรเงาตามที่โจทย์กำหนด

1.) AB

2.) A∩B

3.) (A∩B)C

เราจะทำในวงเล็บก่อน

4.) A∩B∩C

ส่วนเติมเต็ม (complement)

ให้A เป็นเซตย่อยของ U เราจะใช้ A′ แทน ส่วนเติมเต็มของ A

พูดให้เข้าใจง่าย A′ ก็คือ ส่วนที่ไม่ใช่ A 

สมบัติของส่วนเติมเต็ม

ให้ A และ B เป็นเซตย่อยของ U

1.) (A′)′ = A

2.) A∩A′ = Ø

3.) AA′ = U

4.) (AB)′ = A′∩B′

5.) (A∩B)′ = A′B′

6.) Ø′ = U

7.) U′ = Ø

ผลต่างเซต (difference)

ให้ A และ B เป็นเซตย่อยของ U 

ผลต่างของเซต A กับเซต B เขียนแทนด้วย A-B 

A-B คือเซตที่มีสมาชิกของA แต่ไม่มีสมาชิกของ B


trick!! A-B ก็คือ เอาA ไม่เอา B

เช่น A = {1,2,3,4,a,b,c,d} B = {3,4,c,d,e,f}

จะได้ว่า A-B = {1,2,a,b} และ B-A = {e,f}

ภาพประกอบตัวอย่าง

สมบัติที่ควรรู้

 

ตัวอย่าง

ระบายสีตามที่โจทย์กำหนดให้

2.) ให้เอกภพสัมพัทธ์ U = {0,1,2,3,4,5,6,7,8,10}

A ={0,1,3,5,7,9},  B = {0,2,4,6,8,10}

C = {0,3,5,6,8}

จงหา

1.) (A∪B′)∪C

วิธีทำ จากโจทย์ จะได้ว่า (A∪B′)∪C = (A∪C)∪(B′∪C)

พิจารณา A∪C 

จากนั้นพิจารณา B′∪C

และนำทั้งสองมายูเนียนกัน จะได้

ดังนั้น (A∪B′)∪C = {0,1,3,5,6,7,8,9}

 

2.) (A∪C)∩(A∪B)

วิธีทำ พิจารณา (A∪C) จะได้

จากนั้นพิจารณา (A∪B) จะได้

จากนั้นก็นำทั้งสองมาอินเตอร์เซกชัน เราจะได้ส่วนที่ซ้ำกันดังนี้

ดังนั้น (A∪C)∩(A∪B) = {0,1,3,5,6,7,8,9}

 

3.) A-(B∩C)

วิธีทำ พอจารณา (B∩C) จะได้

จากนั้นพิจารณา A-(B∩C) จะได้

ดังนั้น A-(B∩C) = {1,3,5,7,9}

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ  ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่

รากที่สาม

รากที่สาม

ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

โจทย์ปัญหาสัดส่วน 2

บทความนี้น้องๆจะได้เรียนรู้หลักการที่ใช้ในการแก้โจทย์ปัญหาสัดส่วนด้วยวิธีการที่หลากหลายและเข้าใจง่าย สามารถนำไปช่วยในแก้โจทย์ปัญหาในห้องเรียนของน้องๆได้

ประวัติความเป็นมาของวรรณคดีคำสอน เรื่องสุภาษิตพระร่วง

สุภาษิตพระร่วง   คนไทยนิยมใช้สุภาษิตสั่งสอนลูกหลานกันมาตั้งแต่สมัยก่อนจนถึงปัจจุบัน เชื่อว่าน้อง ๆ หลายคนก็คงจะเคยได้ยินสุภาษิตกันมาไม่มากก็น้อย ดังนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาของสุภาษิตพระร่วง วรรณคดีอันทรงคุณค่าและเป็นวรรณคดีเล่มแรกที่แต่งคำประพันธ์เป็นร่ายโบราณแบบร่ายสุภาพ ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของสุภาษิตพระร่วง     สุภาษิตพระร่วง เป็นวรรณคดีคำสอนที่ทรงคุณค่าที่มีมาอย่างยาวนาน มีชื่อเรียกอีกอย่างหนึ่งว่า สุภาษิตบัณฑิตพระร่วง คำว่า พระร่วง ทำให้คนเข้าใจว่าอาจจะเป็นคำสอนของกษัตริย์สักคนที่มีนามว่า พระร่วง

เสียงพยัญชนะ

การออกเสียงพยัญชนะต้นคำและพยัญชนะท้ายคำที่ออกเสียงยากในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การออกเสียงพยัญชนะต่างๆ ที่ขึ้นชื่อว่าออกเสียง “ยาก” ในภาษาอังกฤษ จะมีตัวอะไรกันบ้างนั้นเราไปดูกันเลยครับ

Profile Linking Verbs

มาทำความรู้จักกับ Linking Verbs ให้มากขึ้น

สวัสดีค่ะนักเรียนม.1 ที่น่ารักทุกคน วันนี้เราจะไปรู้จักกับ Linking Verbs ให้มากขึ้น แต่ก่อนอื่นไปดูความหมายของ Linking Verbs กันก่อนนะคะ ไปลุยกันเลย มาทำความรู้จักกับ Linking Verbs     Linking verbs คืออะไรกันนะ Linking แปลว่า การเชื่อม มาจากรากศัพท์ link ที่เป็นกริยาเติมด้วย

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

Nockacademy web logo 3

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1