กราฟของความสัมพันธ์

สารบัญ

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง

เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์ r ได้ดังนี้

กราฟของความสัมพันธ์

 

การเขียนกราฟความสัมพันธ์แบบบอกเงื่อนไข

รูปแบบการเขียนแบบบอกเงื่อนไขจะเป็นเหมือนกับการเขียนเซตแบบบอกเงื่อนไข เช่น A = {x : x ∈ R} และ B = {y : y ∈ I^{+}} เป็นต้น เรามักจะใช้ในกรณีที่ไม่สามารถเขียนแจกแจงสมาชิกทั้งหมดได้ กรณีที่ไม่สามารถแจกแจงสมาชิกได้ทั้งหมด เช่น x เป็นจำนวนจริง จะเห็นได้ว่าจำนวนจริงนั้นมีเยอะมาก บอกไม่หมดแน่ๆ จึงต้องเขียนแบบบอกเงื่อนไขนั่นเอง

เรามาดูตัวอย่างการเขียนกราฟกันค่ะ

ให้ A = {x : x ∈ R} และ B = {y : y ∈ R}

กำหนด r ⊂ A × B และ r = {(x, y) ∈ A × B : y = x²}

ขั้นที่ 1 ให้ลองแทนค่าของจำนวนเต็มบวก x ลงในสมการ y = x²  ที่ต้องแทน x เป็นจำนวนเต็มบวก เพราะเงื่อนไขในเซต A นั่นเอง

แทน x = 0, 1, 2, 3, 4

x = 0 ; y = 0

x = 1 ; y = (1)² = 1

x = 2 ; y = (2)² = 4

x = 3 ; y = (3)² = 9

x = 4 ; y = (4)² = 16

ขั้นที่ 2 เมื่อเราแทนค่า และได้ค่า y มาแล้ว ให้เราเขียนคู่อันดับที่เราได้จากขั้นที่ 1

จะได้คู่อันดับ ดังนี้ (0, 0), (1, 1), (2, 4), (3, 9), (4, 16)

**คู่อันดับที่ได้นี้เป็นเพียงสมาชิกบางส่วนของ r นะคะ เนื่องจากสมาชิกของ r เยอะมาก เราเลยยกตัวอย่างมาบางส่วนเพื่อที่จะเอาไปเขียนกราฟ**

ขั้นที่ 3 นำคู่อันดับที่ได้จากขั้นที่ 2 มาเขียนกราฟ โดยแกนตั้งคือ y แกนนอนคือ x

วิธีการเขียนกราฟคือ นำคู่อันดับแต่ละคู่มามาเขียนบนกราฟ แล้วลากเส้นเชื่อมจุดแต่ละจุด

กราฟของความสัมพันธ์

กราฟข้างต้นเป็นการแทนค่า x ด้วยจำนวนจริงบางส่วน

ถ้าเราแทนค่า x ด้วยจำนวนจริงทั้งหมดจะได้กราฟ ดังนี้

กราฟของความสัมพันธ์

 

กราฟของความสัมพันธ์ในรูปแบบเชิงเส้น

เมื่อให้ x, y เป็นจำนวนจริงใดๆ และ y = ax + b ซึ่งเป็นสมาการเส้นตรง(สมาการเชิงเส้น)

ให้ r_1 = {(x, y) : y = x}

จะได้กราฟ r ดังรูป

น้องๆสามารถลองแทนจุดบางจุดและลองวาดกราฟดู จะได้กราฟตามรูปข้างบนเลยค่ะ

ถ้าให้ r_2 = {(x, y) : y = -x}

จะได้กราฟ ดังรูป

 

ถ้าให้ r_3 = {(x, y) : y = 2x + 1}

จะได้กราฟดังรูป

กราฟของความสัมพันธ์

 

กราฟของความสัมพันธ์ ในรูปแบบกำลังสอง

ให้ x, y เป็นจำนวนจริงใดๆ สมการ y = ax² + bx +c เป็นสมการกำลังสอง ซึ่งเป็นสมการพาราโบลาที่เราเคยเรียนมาตอนม.ต้นนั่นเอง

ให้ r_1 = {(x, y) : y = 2x²}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

จะเห็นว่ากราฟที่ได้เป็นรูปพาราโบลาหงาย มีจุดวกกลับที่จุด (0, 0)

ถ้าให้ r_2 = {(x, y) : x = y²}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

เห็นว่ากราฟที่ได้คือ พาราโบลาตะแคงขวา มีจุดวกกลับที่จุด (0, 0)

ถ้าให้ r_3 = {(x, y) : y = -x² + 2x + 5}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

จะได้กราฟพาราโบลาคว่ำ มีจุดวกกลับที่จุด (1, 6)

 

**น้องๆสามารถแทนค่า x เพื่อหาค่า y แล้วนำคู่อันดับที่ได้มาลองวาดกราฟดูจะได้กราฟตามรูปเลยนะคะ**

 

กราฟของความสัมพันธ์ ในรูปแบบค่าสัมบูรณ์

 

ให้ x, y เป็นจำนวนจริงใดๆ และ y =\left | x \right |

กำหนดให้ r = {(x, y) : y =\left | x-1 \right |}

จะได้กราฟ ดังรูป

 

จากกราฟที่น้องๆเห็นทั้งหมดนี้ น้องๆอาจจะไม่ต้องรู้ก็ได้ว่า สมการแบบนี้กราฟต้องเป็นแบบไหน ในบทนี้ อยากให้น้องๆได้ฝึกแทนจุดบนกราฟโดยการแก้สมการหาค่า x, y แล้วนำมาวาดบนกราฟ 

ข้อสำคัญคือ น้องๆจะลากเส้นเชื่อมจุดได้ต้องมั่นใจว่าทุกจุดที่เส้นกราฟผ่านอยู่ในเงื่อนไขที่กำหนดให้ ถ้าเซตที่กำหนดให้เป็นเซตจำกัดอาจจะไม่สามารถลากเส้นแบบนี้ได้ ดังรูปแรกในบทความนี้นั่นเองค่ะ

 

วิดีโอ กราฟของความสัมพันธ์

 

+5
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook

การอ้างเหตุผล

บทความนี้จะทำให้น้องๆเข้าใจหลักการอ้างเหตุผลมากขึ้นและสามารถตรวจสอบได้ว่า การอ้างเหตุผล สมเหตุสมผลหรือไม่

กาพย์ยานี 11

เรียนรู้เรื่องกาพย์ยานี 11 พร้อมเคล็ดลับการแต่งกาพย์แบบง่ายดาย

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งกับบทเรียนภาษาไทยที่ได้ทั้งสาระความรู้ และความสนุกไปพร้อม ๆ กัน เชื่อว่า น้อง ๆ หลายคนคงเคยได้อ่านหรือได้เรียนเกี่ยวกับการแต่งกาพย์กลอนกันมาบ้างแล้ว ซึ่งหนึ่งในนั้นก็คือ ‘กาพย์ยานี 11’ และต้องบอกว่ากาพย์ชนิดนี้มีวรรณคดีหลาย ๆ เรื่องที่ใช้ในการแต่งบทประพันธ์ หรือเราเองก็มักจะได้เริ่มการแต่งกาพย์ชนิดนี้ก่อนเป็นอันดับแรก ๆ ด้วยรูปแบบของฉันทลักษณ์ที่เข้าใจง่ายไม่ซับซ้อน ไม่ได้กำหนดสระหรือคำเป็นคำตายแต่อย่างใด เพราะฉะนั้น เพื่อเป็นการทบทวน และเพิ่มเติมความรู้ให้กับน้อง

จำนวนตรงข้ามและค่าสัมบูรณ์

จำนวนตรงข้ามและค่าสัมบูรณ์

       บทความนี้ ได้รวบรวมเนื้อหาเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์ ซึ่งเป็นพื้นฐานในการบวกลบจำนวนเต็ม โดยก่อนหน้านี้น้องๆได้เรียนเรื่องการเปรียบเทียบจำนวนเต็มมาแล้ว ต่อไปจะพูดถึงค่าสัมบูรณ์ของจำนวนเต็มใดๆ จะหาได้จากระยะที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน แต่ก่อนอื่นเรามาทำความรู้จักกับจำนวนตรงข้ามกันก่อนนะคะ จำนวนตรงข้าม       “หากค่าของจำนวนที่อยู่ห่างจาก 0 เท่ากัน แต่อยู่ต่างทิศทางกันมีค่าเท่ากันหรือไม่” (ค่าไม่เท่ากัน)           

กราฟเส้น

การนำเสนอข้อมูลในรูปแบบกราฟเส้น

ในบทคาวมนี้จะนำเสนอเนื้อของบทเรียนเรื่องกราฟเส้น นักเรียนจะสามารถเข้าในหลักการอ่านและการวิเคราะห์ข้อมูลจากกราฟเส้น รวมไปถึงสามารถมองความสัมพันธ์ของข้อมูลในแกนแนวตั้งและแนวนอนของกราฟเส้นได้อย่างถูกต้อง

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้