การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐

ตัวอย่างที่ 1

ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล

  • โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง

(โจทย์กำหนดข้อมูลมาให้ 2 ข้อมูล คือ 1) ในเข่งใบหนึ่งมีจำนวนมะม่วงและจำนวนมังคุด

รวมกันอยู่ 68 ผล และ 2) จำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล)

  • โจทย์ถามหาอะไร

(จำนวนมะม่วงและมังคุดในเข่ง)

  • สามารถนำความรู้เกี่ยวกับการแก้ระบบสมการมาใช้ในการแก้ปัญหานี้ได้อย่างไร

(ในการแก้ระบบสมการเชิงเส้นสองตัวแปร ต้องมีตัวแปรสองตัว นั่นคือควรกำหนดตัวแปร x

และตัวแปร y ก่อน)

  • กำหนดให้ตัวแปร x แทนข้อมูลใด

(ให้ x แทน จำนวนมะม่วง)

  • กำหนดให้ตัวแปร y แทนข้อมูลใด

(ให้ y แทน จำนวนมังคุด)

  • สร้างสมการได้อย่างไร

(จากข้อมูล 1) ในเข่งใบหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล

เขียนเป็นสัญลักษณ์ได้ว่า x + y = 68 และ 2) จำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล

เขียนเป็นสัญลักษณ์ได้ว่า y – x = 18)

  • สามารถแก้ระบบสมการหาค่า x และ y อย่างไร

จากระบบสมการ

x + y = 68          ———-(1)

y – x  = 18          ———-(2)

นำ  (1)  +  (2)  ;   2y  =  86

         y  =  86 ÷ 2

                                                  y  =  43

แทนค่า  y = 43 ในสมการ  (1) จะได้

x + 43 =  68

x  =  68 – 43

x  =  25

ดังนั้น  เข่งใบนี้มีมะม่วง 25 ผล และมังคุด 43 ผล

ตัวอย่างที่ 2

กระเป๋าใบบหนึ่งบรรจุเหรียญห้าบาทและเหรียญสิบบาท จำนวน 25 เหรียญ เป็นเงิน 180 บาท จงหาจำนวนของเหรียญแต่ละชนิด

วิธีทำ  ให้มีเหรียญสิบบาทเป็น x เหรียญ คิดเป็นเงิน  10x  บาท

และมีเหรียญห้าบาทเป็น y เหรียญ คิดเป็นเงิน  5y  บาท

จากโจทย์มีเหรียญจำนวน 25 เหรียญ

เขียนเป็นสมการได้เป็น                  x + y = 25                 ———-(1)

10x + 5y = 180              ———-(2)

(1) × 5 ;                                     5x + 5y = 125              ———-(3)

(2) – (3);                                     5x = 55

  x = 55 ÷ 5

                                                      x = 11

แทน x = 1 ในสมการ (1) จะได้     11 + y = 25

           y = 25 – 11 

                                                               y = 14

ดังนั้น มีเหรียญสิบบาท 11 เหรียญและเหรียญห้าบาท 14 เหรียญ

ตัวอย่างที่ 3

ลวดหนามขดหนึ่งยาว 84 เมตร นำไปล้อมรั้วรอบที่ดินรูปสี่เหลี่ยมผืนผ้า ที่มีด้านกว้างสั้นกว่าด้านยาว 6 เมตร
จงหาพื้นที่ของที่ดินแปลงนี้

วิธีทำ      ให้ด้านกว้างเท่ากับ x เมตร และด้านยาวเท่ากับ  y  เมตร

โจทย์กำหนดให้ด้านกว้างสั้นกว่าด้านยาว 6 เมตร

                    y – x = 6         —————(1)

และโจทย์กำหนดความยาวรอบสนามเท่ากับความยาวของลวดหนาม

2(x + y) = 84

x + y = 42       —————(2)

(1) + (2);                 2y = 48

    y = 48 ÷ 2

                                   y = 24

แทนค่า y = 24 ในสมการ (2) จะได้    x + 24 = 42

        x  = 42 – 24    

                                                                        x = 18

จะได้ พื้นที่สี่เหลี่ยมผืนผ้า = กว้าง × ยาว  =  xy   = 18 × 24 = 432 ตารางเมตร

ดังนั้น พื้นที่ที่ดินแปลงนี้ เท่ากับ  432 ตารางเมตร

ตัวอย่างที่ 4

มีจำนวนสองจำนวน จำนวนมากมากกว่าสองเท่าของจำนวนน้อยอยู่ 6 แต่สองเท่าของจำนวนมากมากกว่า
จำนวนน้อยอยู่ 30 จงหาจำนวนทั้งสองนั้น

วิธีทำ  ให้จำนวนมากเป็น  x  และจำนวนน้อยเป็น  y

โจทย์กำหนดจำนวนมากมากกว่าสองเท่าของจำนวนน้อยอยู่ 6

              x – 2y = 6            ————(1)

และโจทย์กำหนดสองเท่าของจำนวนมากมากกว่าจำนวนน้อยอยู่ 30

              2x – y = 30          ————(2)

(2) × 2 ;                  4x – 2y = 60          ————(3)

(3) – (1);                         3x = 54

x = 54 ÷ 3

x = 18

แทนค่า x = 18 ในสมการ (1) จะได้  18 – 2y = 6

                2y = 18 – 6

                                                                    2y = 12

                            y = 12 ÷ 2  

                                                                     y = 6

ดังนั้น จำนวนทั้งสองคือ 18 และ 6

ตัวอย่างที่ 5

มีผู้เข้าชมคอนเสิร์ต ที่ซื้อบัตรผ่านประตูจำนวน 610 คน เก็บเงินค่าผ่านประตูสองราคา คือ 100 บาท และ 50 บาท ปรากฏว่าเก็บเงินได้ 45,200 บาท ดังนั้น ขายบัตรราคา 100 บาท และ 50 บาท ไปได้อย่างละกี่ใบ

วิธีทำ  ให้ขายบัตรใบละ 100 บาท ได้ x ใบ และขายบัตรใบละ 50 บาท ได้ y ใบ

  มีผู้เข้าชมการแข่งขันฟุตบอลที่เสียเงินจำนวน 610 คน

  จะได้สมการ             x + y   =    610      ———-(1)

จะขายบัตรใบละ 100 บาท ได้เงิน 100x บาท

ขายบัตรใบละ 50 บาท ได้เงิน 50y บาท

จะขายบัตรได้เงิน 45,200 บาท

ดังนั้นจะได้สมการ  100x + 50y  =    45,200   ———-(2)

นำสมการ (1) คูณด้วย 50 จะได้

                                   50x + 50y    =    30,500  ———-(3)                       

นำสมการ (2) ลบด้วย สมการ (3) จะได้

                                    50x     =    14,700

                    x     =    14,700 ÷ 50

                                         x     =    294

แทนค่า x ด้วย 294 ใน (1) จะได้   294 + y    =  610

                                                                               y   =  610 – 294

y   =   316

ตอบ  ขายบัตรใบละ 100 บาท ได้ 294 ใบ และขายบัตรใบละ 50 บาท ได้ 316 ใบ

วิดีโอ การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้ที่มาของชาติกำเนิดอันยิ่งใหญ่ มหาเวสสันดรชาดก

หลายคนคงจะเคยได้ยินคำว่า มหาชาติชาดก หรือ มหาเวสสันดรชาดก กันมาบ้างแล้วผ่านสื่อต่าง ๆ แต่รู้หรือไม่คะว่าคำ ๆ นี้มีที่จากอะไร คำว่า มหาชาติ เป็นคำเรียก เวสสันดรชาดก ส่วนชาดกนั้นเป็นชื่อคัมภีร์หนึ่งของพุทธศาสนาที่กล่าวถึงอดีตชาติของพระพุทธเจ้า ดังนั้นมหาเวสสันดรชาดก จึงเป็นเรื่องราวที่เกี่ยวกับชาติกำเนิดอันหยิ่งใหญ่ของพระพุทธเจ้า น้อง ๆ คงสงสัยใช่ไหมคะว่าทำไมเวสสันดรชาดกถึงได้ชื่อว่าเป็นชาดกที่ยิ่งใหญ่ที่สุด ถ้าอยากรู้คำตอบแล้วล่ะก็ เราไปเรียนรู้ความเป็นของเรื่องนี้พร้อมกันเลยค่ะ   มหาเวสสันดรชาดก   มหาชาติชาดก

Suggesting Profile

การแสดงความต้องการ เสนอและให้ความช่วยเหลือ ตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ

สวัสดีค่ะนักเรียนชั้นม. 3 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิค การแสดงความต้องการ เสนอและให้ความช่วยเหลือ ตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า การแสดงความต้องการ     Question: สงสัยมั้ยว่า need/want /would like to have สามคำนี้ต่างกันยังไง? ตัวอย่างการใช้ need VS want  ในประโยคบอกเล่า เช่น

บวก ลบ ทศนิยมอย่างไรให้ตรงหลัก

การบวกและการลบทศนิยมมีหลักการเดียวกันกับการบวกและการลบจำนวนนับคือ ต้องบวกและลบให้ตรงหลัก ดังนั้นหัวใจสำคัญของเรื่องนี้คือต้องเขียนตำแหน่งของตัวเลขให้ตรงหลักไม่ว่าจะเป็นหน้าจุดทศนิยมและหลัดจุดทศนิยม บทความมนี้จะมาบอกหลักการตั้งบวกและตั้งลบให้ถูกวิธี และยกตัวอย่างการบวกการลบทศนิยมที่ทำให้น้อง ๆเห็นภาพและเข้าใจได้อย่างดี

ตัวอย่างโจทย์ปัญหา + – × ÷ ระคนของเศษส่วนและจำนวนคละ

บทความนี้จะยกตัวอย่างของโจทย์ปัญหาบวก ลบ คูณ หารระคนของเศษส่วนและจำนวนคละพร้อมทั้งวิธีวิเคราะห์โจทย์ การแก้โจทย์ปัญหาและหาคำตอบออกมาได้อย่างสมเหตุสมผล หลังจากอ่านบทความนี้จบน้อง ๆ จะสามารถทำความเข้าใจกับโจทย์ปัญหาบวก ลบ คูณ หารระคนของเศษส่วนและจำนวนคละและแก้โจทย์ได้ดียิ่งขึ้น

โคลงโลกนิติ

ศึกษาตัวบทและคุณค่าที่แฝงอยู่ในโคลงโลกนิติ

หลังจากที่ได้เรียนรู้ความเป็นมาและเนื้อหาในโคลงโลกนิติกันแล้ว น้อง ๆ ก็คงจะอยากรู้กันแล้วใช่ไหมคะว่าตัวบทในโคลงโลกนิติที่มีอยู่มากมายนั้น มีตัวบทไหนที่เด่น ๆ กันบ้าง วันนี้เรามาศึกษาตัวบทที่น่าสนใจเพื่อทำความเข้าใจถึงคติธรรมและคุณค่าที่อยู่ในเรื่องกันค่ะ โคลงโลกนิติ โคลงโลกนิติเป็นบทประพันธ์ที่มีคำสอนมากมาย ไม่ว่าจะเป็นเรื่องของการคบเพื่อน การปฏิบัติตัวกับพ่อแม่ หรือแม้แต่การดำเนินชีวิตในแต่ละวัน เรามาดูตัวบทเด่น ๆ ที่ควรรู้กันทีละบทเลยนะคะว่าแต่ละบทสอนเรื่องอะไรบ้าง   ศึกษาตัวบท     ความหมาย กล่าวถึงปลาร้าที่มีกลิ่นเหม็น และใบคา แม้ใบคาจะเป็นใบไม้ที่ไม่มีกลิ่นเฉพาะตัว แต่เมื่อนำไปห่อปลาร้าก็จะทำให้มีกลิ่นเหม็นจากปลาร้าติดไปด้วย

phrasal verbs

Phrasal Verbs: กริยาวลีในภาษาอังกฤษ

สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ two-word verbs และ three-word verb ในภาษาอังกฤษกันครับ จะเป็นอย่างไรเราไปดูกันเลย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1