การแก้ระบบสมการเชิงเส้นสองตัวแปร

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐

ให้ a, b, c, d, e และ f เป็นจำนวนจริงใดๆ ที่ a,b ไม่เป็นศูนย์บร้อมกัน และ c,d ไม่เป็นศูนย์บร้อมกัน เรียกระบบที่ประกอบด้วยสมการ

ax +by =c

cx + dy = f

ว่า ระบบสมการเชิงเส้นสองตัวแปร ซึ่งคำตอบของระบบสมการเชิงเส้นสองตัวแปร คือ คู่อันดับ (x,y) ที่ค่า x และ ค่า y ทำให้สมการทั้งสองของระบบสมการเป็นจริง

ตัวอย่างที่ 1 

ตัวอย่างที่ 1  จงแก้ระบบสมการ

x + y = 50

2x + 4y = 140

วิธีทำ   x + y = 50             ———(1)

  2x + 4y = 140      ———(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร x โดยการทำสัมประสิทธิ์ของตัวแปร x ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร x ในสมการ(1) เท่ากับ 1 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ 2 ดังนั้น นำสมการ (1) × 2 เพื่อให้สัมประสิทธิ์ของตัวแปร x เท่ากับ 2

(1) × 2 ;     2x + 2y = 100      ———(3)

เมื่อสัมประสิทธิ์ของตัวแปร x เท่ากันแล้ว กำจัดตัวแปร x เพื่อหาค่า y โดยการนำ สมการ (2) – (3)

(2) – (3) ;  (2x + 4y) – (2x + 2y) = 140 – 100

      2x + 4y – 2x – 2y = 40

          2y = 40

                                           y = 40 ÷ 2

  y = 20

หาค่า x โดยแทน y ด้วย 20 ในสมการที่ (1) จะได้

        x + y = 50

                                   x + 20 = 50

                                           x  = 50 – 20    

 x  = 30

ตรวจสอบ     แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (1) จะได้

x + y = 30 + 20 = 50  เป็นจริง

แทน x ด้วย 30 และแทน y ด้วย 20 ในสมการ (2) จะได้

2x + 4y = 2(30) + 4(20) =  60 + 80 = 140  เป็นจริง

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

นอกจากวิธีการดังกล่าวแล้ว ยังสามารถใช้วิธีการแทนค่า ได้ดังนี้

วิธีทำ     x + y = 50            ———(1)

2x + 4y = 140          ———(2)

จากสมการ (1) ให้จัดรูปใหม่ โดยให้ตัวแปร x อยู่ทางซ้ายของเครื่องหมายเท่ากับ เพียงตัวเดียว

จาก (1);    x = 50 –  y     ———(3)

แทน x ด้วย 50 – y ใน (2) จะได้

2x + 4y = 140

        2(50 – y) + 4y = 140

                              100 – 2y + 4y = 140

        2y = 140 – 100

        2y = 40

          y = 40 ÷ 2

          y = 20

แทน y ด้วย 20 ใน (3) จะได้

x = 50 –  y

                                        x = 50 – 20

                                        x = 30

ดังนั้น คำตอบของระบบสมการคือ (30, 20)

ตัวอย่างที่ 2

ตัวอย่างที่ 2  จงแก้ระบบสมการ

3x + 4y = 27   ——-(1)

2x – 3y = 1     ——-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 4 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 4 และ 3 คือ 4 × 3 = 12 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 12

(1) × 3;      9x + 12y = 81   ——-(3)

(2) × 4;      8x – 12y = 4     ——-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 12 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -12 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)

(3) + (4);    (9x + 12y) + (8x – 12y) = 81 + 4

    17x = 85

                                                           x = 85 ÷ 17

       x = 5

หาค่า y โดยแทนค่า x = 5 ในสมการที่ (1) จะได้

    3x + 4y = 27

                     3(5) + 4y = 27

  4y = 27 – 15

  4y = 12

    y = 4 ÷ 3

    y = 3

ตรวจสอบ     แทนค่า x = 5  และ y = 3 ในสมการ (1) จะได้

3(5) + 4(3) = 15 + 12 = 27   เป็นจริง

แทนค่า x = 5  และ y = 3 ในสมการ (2) จะได้

2(5) – 3(3) = 10 – 9 = 1   เป็นจริง

ดังนั้น คำตอบของระบบสมการ คือ (5,3)

ตัวอย่างที่ 3

ตัวอย่างที่ 3  จงแก้ระบบสมการ

3x + 2y = 16
2x – 3y = 2

วิธีทำ

3x + 2y = 16 ———-(1)
2x – 3y = 2 ———-(2)

อธิบายเพิ่มเติม : กำจัดตัวแปร y โดยการทำสัมประสิทธิ์ของตัวแปร y ให้เท่ากันทั้ง 2 สมการ เนื่องจาก สัมประสิทธิ์ของตัวแปร y ในสมการ(1) เท่ากับ 2 และ สัมประสิทธิ์ของตัวแปร x ในสมการ (2) เท่ากับ -3 ดังนั้น หา ค.ร.น. ของ 2 และ 3 คือ 2 × 3 = 6 คูณสัมประสิทธิ์ของตัวแปร y ให้เท่ากับ 6
(1)×3;   9x + 6y = 48 ———-(3)
(2)×2;   4x – 6y = 4 ———-(4)

สัมประสิทธิ์ของตัวแปร y ในสมการ (3) เท่ากับ 6 และสัมประสิทธิ์ของตัวแปร y ในสมการ (4) เท่ากับ -6 เมื่อนำทั้ง 2 สมการมาบวกกัน สัมประสิทธิ์ของตัวแปร y จะมีค่าเท่ากับ 0 (กำจัด y)
(3) + (4);  (9x + 6y) + (4x – 6y) = 48 + 4

13x = 52

    x = 52 ÷ 13

                         x = 4

หาค่า y โดยแทน x ด้วย 4 ในสมการ (1) จะได้

  3x + 2y = 16

3(4) + 2y = 16

   12 + 2y = 16

            2y = 16 – 12

            2y = 4

            y = 2

ตรวจสอบ แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (1) จะได้
3(4) + 2(2) = 12 + 4 = 16 เป็นจริง
แทน x ด้วย 4 และแทน y ด้วย 2 ในสมการ (2) จะได้
2(4) – 3(2) = 8 – 6 = 2 เป็นจริง
ดังนั้น คำตอบของระบบสมการ คือ (4,2)

คลิปวิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เตรียมสอบเข้า ม.1 โรงเรียนสตรีวิทยา

เตรียมสอบเข้า ม.1 โรงเรียนสตรีวิทยากันเถอะ   สวัสดีค่ะ มาพบกับแอดมินและ Nock Academy กับบทความเตรียมสอบเข้าม.1 กันอีกแล้วแต่วันนี้เรามาในบทความการสอบเข้าของโรงเรียนสตรีวิทยา โรงเรียนหญิงล้วนที่มีชื่อเสียงโด่งดังมานานกว่า 118 ปี อีกทั้งยังเคยเป็นสถานศึกษาของสมเด็จย่าและเคยได้รับเสด็จสมเด็จพระราชินีนาถเอลิซาเบธที่ 2 กล่าวได้ว่าเป็นโรงเรียนที่มีความผูกพันธ์กับราชวงศ์ของไทยและเป็นสถานที่ที่เคยต้อนรับราชวงศ์ชั้นสูงมาแล้วอีกด้วย นับเป็นความภาคภูมิใจแก่ผู้ที่ได้เข้าศึกษาที่โรงเรียนแห่งนี้เป็นอย่างมาก ไม่เพียงแต่เรื่องของความเก่าแก่และยาวนานของโรงเรียนที่ทำให้โรงเรียนสตรีวิทยานั้นเป็นที่รู้จัก แต่ในด้านของวิชาการก็มีความเข้มข้นและการแข่งขันที่สูงด้วยเช่นเดียวกัน โรงเรียนสตรีวิทยาในปัจจุบันมีการเรียนการสอนตั้งแต่ระดับชั้นมัธยมศึกษาปีที่ 1 ไปจนถึงมัธยมศึกษาปีที่ 6 ถือได้ว่าเป็นโรงเรียนมัธยมขนาดใหญ่ มีอัตราการสอบเข้าศึกษาที่สูงมากในแต่ละปี

ความเป็นมาของบทละครเรื่องรามเกียรติ์ ตอน นารายณ์ปราบนนทก

บทละครเรื่องรามเกียรติ์ เป็นวรรณคดีที่สำคัญและมีอิทธิพลต่อความคิดความเชื่อของคนไทยมาอย่างยาวนาน น้อง ๆ หลายคนก็คงจะรู้จักและเคยเห็นผ่านตากันมาบ้างตามสื่อต่าง ๆ แต่ทราบไหมคะว่าวรรณคดีเรื่องนี้มีที่มาอย่างไร และทำไมถึงมาเป็นบทละคร มีความสำคัญอย่างไรจึงมาอยู่ในบทเรียนวิชาภาษาไทย เราไปดูพร้อม ๆ กันเลยค่ะ   ความเป็นมาของบทละครเรื่องรามเกียรติ์     รามเกียรติ์ เป็นวรรณคดีที่ได้รับอิทธิพลและมีเค้าโครงเรื่องมาจากมหากาพย์รามายณะที่ฤๅษีวาลมีกิ ชาวอินเดียเป็นคนแต่งขึ้นเป็นภาษาสันสกฤต แม้จะไม่ปรากฏปีที่วรรณคดีเรื่องดังกล่าวเข้ามาเผยแผ่ในไทยอย่างแน่ชัด แต่ด้วยจากหลักฐานทางประวัติศาสตร์ก็ทำให้นักวิชาการคาดการณ์ว่าเป็นช่วงสมัยอยุธยา และในสมัยกรุงธนบุรี พระเจ้าตากสินได้ทรงประพันธ์เพื่อให้ละครหลวงเล่น ก่อนที่ต่อมาสมเด็จพระพุทธยอดฟ้าจุฬาโลก รัชกาลที่

อิศรญาณภาษิต

อิศรญาณภาษิต ศึกษาวรรณคดีคำสอนของไทย

อิศรญาณภาษิต เป็นวรรณคดีที่มีเนื้อหาสอนให้ผู้อ่านรู้จักลักษณะของกลอนเพลงยาวและยังสอดแทรกข้อคิดต่าง ๆ ไว้อีกมากมาย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงประวัติความความเป็นมา ผู้แต่ง ลักษณะคำประพันธ์ของกลอนเพลงยาว และตัวบทที่น่าสนใจ ๆ ในเรื่อง ถ้าน้อง ๆ อยากรู้แล้วว่าวรรณคดีเรื่องนีมีความเป็นมาและความสำคัญอย่างไร เหตุใดจึงอยู่ในแบบเรียนภาษาไทยในเราได้ศึกษากันอยู่ตอนนี้ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ     ความเป็นมาของ   อิศรญาณภาษิต (อ่านว่า

การอ่านจับใจความ

การอ่านจับใจความ เทคนิคที่จะช่วยให้เข้าใจเนื้อหามากขึ้น

ปัญหาที่มักจะเกิดขึ้นได้บ่อยเวลาที่เราอ่านหนังสือเรียนจบแต่เมื่อถึงเวลาไปสอนกลับจำเนื้อหาที่อ่านมาไม่ได้เลย เพราะแท้จริงการอ่านเฉย ๆ ไม่ได้ช่วยให้เราจำเนื้อหาได้ แต่สิ่งที่จะช่วยให้เราได้เข้าใจแก่นของเรื่องที่อ่านจริง ๆ ก็คือการจับใจความสำคัญของเรื่องให้ได้นั่นเองค่ะ บทเรียนในวันนี้จะพาน้องไปเรียนรู้เกี่ยวกับเรื่อง การอ่านจับใจความ เพื่อช่วยให้สามารถจับประเด็นของเนื้อหาได้ โดยที่ไม่ต้องท่องจำให้เสียเวลาเลยค่ะ จะเป็นอย่างไรบ้างนั้น ไปดูพร้อมกันเลยค่ะ   การอ่านจับใจความ   เป็นการอ่านเพื่อจับใจความหรือข้อคิด ความคิดสำคัญหลักของข้อความ หรือเรื่องที่อ่าน เป็นข้อความที่คลุมข้อความอื่น ๆ ในย่อหน้าหนึ่ง ๆ ไว้ทั้งหมด  

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1