การสะท้อน

ในบทความนี้เราจะได้เรียนรู้ภาพที่ได้จากการสะท้อน ( Reflection ) ไปตามแนวแกนต่างๆ หวังว่าน้องๆ จะสามารถนำความรู้ที่ได้จากบทความนี้ ไปประยุกต์ใช้ในห้องเรียนและในชีวิตประจำวันได้อย่างแท้จริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การประยุกต์ของการแปลงทางเรขาคณิตเป็นการเปลี่ยนตำแหน่งของรูปเรขาคณิต โดยลักษณะและขนาดของรูปยังคงเดิม โดยใช้การสะท้อนเช่นเดียวกัยการที่เราไปยืนหน้ากระจก

ความหมายของการสะท้อน

การสะท้อนบนระนาบเป็นการแปลงทางเรขาคณิตที่มีเส้นตรง l เป็นเส้นสะท้อนแต่ละจุด P บนระนาบจะมีจุด P´ เป็นภาพที่ได้จากการสะท้อนจุด P โดยที่

  1. ถ้าจุด P ไม่อยู่บนเส้นตรง l แล้วเส้นตรง l จะแบ่งครึ่งและตั้งฉากกับส่วนของเส้นตรง PP´
  2. ถ้าจุด P อยู่บนเส้นตรง l แล้วจุด P และ P´ เป็นจุดเดียวกัน

รูปสะท้อน

สมบัติการสะท้อน

  1. สามารถเลื่อนรูปต้นแบบทับภาพที่ได้จากการสะท้อนได้สนิทโดยต้องพลิกรูปหรือกล่าวว่ารูปต้นแบบและภาพที่ได้จากการสะท้อนเท่ากันทุกประการ
  2. ส่วนของเส้นตรงบนรูปต้นแบบและภาพที่ได้จากการสะท้อนของส่วนของเส้นตรงนั้นไม่จำเป็นต้องขนานกันทุกคู่
  3. ส่วนของเส้นตรงที่เชื่อมจุดแต่ละจุดบนรูปต้นแบบกับจุดที่สมนัยกันบนภาพที่ได้จากการสะท้อนจะขนานกันและไม่จำเป็นต้องยาวเท่ากัน

การหาภาพที่ได้จากการสะท้อนเมื่อกำหนดรูปต้นแบบและเส้นสะท้อนมาให้

กำหนดให้ รูปสี่เหลี่ยม ABCD เป็นรูปต้นแบบและ เส้นตรงXY เป็นเส้นสะท้อนจงหาภาพที่ได้จากการสะท้อนของรูปสี่เหลี่ยม ABCD

วิธีสร้าง

หาภาพสะท้อน

การหาเส้นสะท้อนเมื่อกำหนดรูปต้นแบบและภาพที่ได้จากการสะท้อน

กำหนดให้ สามเหลี่ยม A’B’C’ เป็นภาพที่ได้จากการสะท้อน สามเหลี่ยมABC ดังรูป

สะท้อนจากรูปต้นแบบ

 

แนวคิด การหาเส้นสะท้อนที่มีสามเหลี่ยมA’B’C’ เป็นภาพที่ได้จากการสะท้อนทำได้โดยลากส่วนของเส้นตรงเชื่อมระหว่างจุดที่สมนัยกับคู่ใดคู่หนึ่งของ สามเหลี่ยมABC และ สามเหลี่ยมA’B’C เช่น อาจจะลาก AA’ , BB’ หรือ CC’ ก็ได้

แล้วลากเส้นแบ่งครึ่งและตั้งฉากกับ AA’ จะได้เส้นสะท้อนตามต้องการดังรูป

การหาภาพจากการสะท้อนที่แกน X และแกน Y

กำหนดให้ สามเหลี่ยมABC และต้องการหาภาพจากการสะท้อนที่แกน X และสะท้อนที่แกน Y

สะท้อนจากแกม x แกน y

แนวคิด การหาภาพจากการสะท้อนที่แกน X

จากรูป สามเหลี่ยมABC มีแกน X เป็นเส้นสะท้อนจะมีจุด A’, B’ และ C’ เป็นภาพที่ได้จากการสะท้อนจุด A, B และ C ตามลำดับ ซึ่งพิกัดของจุดแต่ละคู่ที่สมนัยกันจะมีพิกัดที่หนึ่งเป็นจำนวนเดียวกันเพราะอยู่ด้านเดียวกันและห่างจากแกน Y เป็นระยะที่เท่ากันและมีพิกัดที่สองเป็นจำนวนตรงข้ามกันเพราะอยู่คนละด้านของแกน X เป็นระยะทางที่เท่ากันและภาพที่ได้มีลักษณะดังรูป

ภาพสะท้อนแกน x y

การหาพิกัดของจุด A’ , B’ และ C’ หาได้โดยพิจารณาพิกัดของ A, B, C

คือ        A (1, 3) → A ‘(1, -3)

            B (-4, -2) → B’ (-4. 2)

            C (3. -5) → C ‘(3.5)

การหาภาพจากการสะท้อนที่แกน Y

ทำได้โดยการพิจารณาพิกัดของ A’ , B’ และ C’ จากพิกัดของ A, B และ C ดังนี้

A (1, 3) → A ‘(-1, 3)

B (-4, -2) → B’ (4. -2)

C (3. -5) → C'(-3, -5)

การสะท้อน

การหาภาพที่สะท้อนกับเส้นสะท้อนที่ขนานกับแกน X หรือขนานกับแกน Y

ถ้าเส้นสะท้อนขนานกับแกน X หรือแกน Y ให้นับช่องตารางหาระยะระหว่างจุดที่กำหนดให้กับเส้นสะท้อนซึ่งภาพของจุดนั้นจะอยู่ห่างจากเส้นสะท้อนเป็นระยะที่เท่ากันกับระยะที่นับได้เมื่อได้ภาพของจุดนั้นแล้วจึงหาพิกัด

ตัวอย่างเช่น ภาพของ A ที่สะท้อนที่เส้นตรง l  เป็นภาพที่ A’

การหาภาพที่สะท้อนกับเส้นสะท้อนที่ไม่ขนานกับแกน X และไม่ขนานกับแกน Y

ในกรณีที่เส้นสะท้อนไม่ขนานกับแกน X และแกน Y แต่เป็นเส้นในแนวทแยงให้ลากเส้นตรงผ่านจุดที่กำหนดให้และตั้งฉากกับเส้นสะท้อนภาพของจุดที่กำหนดให้จะอยู่บนเส้นตั้งฉากที่สร้างขึ้นและอยู่ห่างจากเส้นสะท้อนเป็นระยะเท่ากับจุดที่กำหนดให้อยู่ห่างจากเส้นสะท้อนเมื่อได้ภาพของจุดนั้นแล้วจึงหาพิกัด

ตัวอย่างเช่นภาพของจุด A(4, 2) สะท้อนกับเส้นตรง l ได้ภาพที่ A’ ดังรูป

คลิปตัอย่างเรื่องการสะท้อน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กราฟของความสัมพันธ์เชิงเส้น ปก

กราฟของความสัมพันธ์เชิงเส้น

บทความนี้จะเป็นการสอนวิธีการเขียน กราฟของความสัมพันธ์เชิงเส้น ซึ่งทำได้โดยการหาความสัมพันธ์ของจำนวนสองจำนวน เขียนให้อยู่ในรูปคู่อันดับ และเขียนกราฟแสดงความสัมพันธ์ข้างต้น ซึ่งน้องๆสามารถศึกษาการเขียนกราฟของความสัมพันธ์เชิงเส้นเพิ่มเติมได้ที่  ⇒⇒ กราฟของความสัมพันธ์เชิงเส้น ⇐⇐ คู่อันดับ กราฟของความสัมพันธ์เชิงเส้น เขียนแสดงความเกี่ยวข้องของปริมาณสองปริมาณที่กำหนดให้ โดยความสัมพันธ์ระหว่างปริมาณสองปริมาณที่พบในชีวิตประจำวัน เช่น ปริมาณของน้ำประปาที่ใช้กับค่าน้ำ ปริมาณเวลาในการใช้โทรศัพท์กับค่าโทรศัพท์ ระยะทางที่โดยสารรถประจำทางปรับอากาศกับค่าโดยสาร ปริมาณของกระแสไฟฟ้ากับค่าไฟฟ้า เป็นต้น เราสามารถเขียนแสดงความสัมพันธ์เหล่านี้ในรูปตาราง แผนภาพ คู่อันดับ รวมทั้งแสดงในรูปของกราฟได้ ซึ่งในหัวข้อนี้ เราจะทำความรู้จักกับคู่อันดับกันก่อนนะคะ

การใช้ Auxiliary Verb: can, can’t

การใช้ Auxiliary Verb: can, can’t  บทนำแสนแซ่บ สวัสดีครับพ่อแม่พี่น้องสุดปังทุกท่าน วันนี้เรามาคุยกันเรื่องของคำกริยาช่วยที่ทำให้เรารู้ว่าคนนั้น ๆ สิ่งนั้น หรืออันนั้นมีความสามารถในการทำอะไรได้บ้างกันดีกว่า  ในภาษาไทยเอง เวลาเราจะอธิบายว่าเรามีความสามารถอะไรเราก็มักจะพูดว่า “เรา… ทำได้” หรือ “เราสามารถ….ทำได้” โดยภาษาอังกฤษสุดที่รักของเราเองก็มีอะไรแบบนั้นเหมือนกัน โดยเค้าใช้คำว่า Can มาช่วย โดยเราจะเรียกคำกริยาช่วยเหลือนี้ว่า Auxiliary verb หรือ

การเปรียบเทียบจำนวนเต็ม

การเปรียบเทียบจำนวนเต็ม

ทบทวนจำนวนเต็ม บทความนี้จะทำให้น้องๆ เข้าใจ การเปรียบเทียบจำนวนเต็ม ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย น้องๆรู้จัก จำนวนเต็ม กันแล้ว แต่หลายคนยังไม่สามาถเปรียบเทียบความมากน้อยของจำนวนเต็มเหล่านั้นได้ ซึ่งถ้าน้องๆ เคยเรียนเรื่องการเปรียบเทียบเศษส่วนและจำนวนคละมาแล้ว เรื่องนี้จะกลายเป็นเรื่องง่ายดาย ซึ่งได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ทบทวนเรื่องจำนวนเต็ม  เช่น                                                                                                     25 ,  9  , -5 , 5.5 ,

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

สัจนิรันดร์

ในบทความจะเขียนเกี่ยวกับวิธีการพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ ซึ่งจะเน้นให้น้องๆเข้าใจหลักการของการพิสูจน์ สิ่งที่น้องจะได้จากบทความนี้คือ น้องจะสามารถพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ได้และหากน้องๆขยันทำโจทย์บ่อยๆจะทำให้น้องวิเคราะห์โจทย์เกี่ยวกับสัจนิรันดร์ได้ง่ายขึ้นแน่นอนค่ะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1