สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ มุม-ด้าน-มุม
สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 1ด้าน และ มุม 2 มุม ในการพิสูจน์

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ในทางคณิตศาสตร์เมื่อสามารถเคลื่อนที่รูปเรขาคณิตรูปหนึ่งไปทับรูปเรขาคณิตอีกรูปหนึ่งได้สนิท จะกล่าวว่ารูปเรขาคณิตสองรูปนั้น เท่ากันทุกประการ

ถ้ารูปสามเหลี่ยมสองรูปใดๆ มีมุมที่มีขนาดเท่ากันสองคู่ และด้านซึ่งเป็นแขนร่วมของมุมทั้งสองมีขนาดยาวเท่ากันด้วยแล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ

เท่ากันทุกประการแบบมุม-ด้าน-มุม

 

มุม-ด้าน-มุม

ตัวอย่างที่ 1

จงพิสูจน์ว่า PX = PZ เมื่อ รูปสี่เหลี่ยม PXYZ เป็นสี่เหลี่ยมรูปว่าว และมีมุมที่เท่ากันดังรูป

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ความเท่ากันทุกประการของสามเหลี่ยม

ตัวอย่างที่ 2

กำหนดให้ มุมABO = มุมOCD และด้าน BO = OC ตามรูป จงพิสูจน์ว่า AB = CD

สามเหลี่ยมที่เท่ากันแบบมุม-ด้าน-มุม

เท่ากันทุกประการ

ตัวอย่างที่ 3

กำหนดให้ มุมQPS = มุมSPR และ มุมPSQ = มุมPSR = 90องศา อยากทราบว่า สามเหลี่ยมPQR เป็นรูปสามเหลี่ยมหน้าจั่วหรือไม่

สามเหลี่ยมหน้าจั่ว

ความเท่ากันทุกประการ

ตัวอย่างที่ 4

จากรูปกำหนดให้ มุมPOK = มุมRKO และ มุมOKP = มุมKOR จงพิสูจน์ว่าสามเหลี่ยมOPK และสามเหลี่ยมKROเป็นสามเหลี่ยมที่เท่ากันทุกประการ

สามเหลี่ยมที่เท่ากันทุกประการ

ความเท่ากันทุกประการแบบมุม-ด้าน-มุม

คลิปวิดีโอตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โคลนติดล้อ บทความปลุกใจในรัชกาลที่ 6

เป็นที่รู้กันดีกว่าพระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ของเรานั้น ทรงโปรดงานด้านวรรณกรรมมาตั้งแต่ยังเยาว์ และเริ่มงานวรรณกรรมตั้งแต่ยังทรงศึกษาอยู่ที่ประเทศอังกฤษ ทำให้มีผลงานในพระราชนิพนธ์มากมายหลายเรื่อง และแตกต่างกันออกไป ที่ผ่านมาน้อง ๆ คงจะได้เรียนมาหลายเรื่องแล้ว บทเรียนในวันนี้ก็จะพาน้อง ๆ ไปรู้จักกับผลงานของพระองค์อีกเรื่องหนึ่ง แตกต่างจากเรื่องก่อน ๆ ที่เคยเรียนมาอย่างแน่นอน เพราะเรากำลังพูดถึงโคลนติดล้อ ผลงานในพระราชนิพนธ์ที่อยู่ในรูปแบบของบทความ จะมีที่มา มีเนื้อหาที่น่าสนใจอย่างไรบ้างนั้น เราไปติดตามกันเลยค่ะ   ที่มาของ โคลนติดล้อ

can could

การตั้งคำถามโดยใช้ Can และ Could

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้วิธีการใช้กริยาช่วยคือ Can และ Could กันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

เทคนิคอ่านจับใจความ Skim and Scan

เทคนิคอ่านเร็วจับใจความในภาษาอังกฤษ (Skimming and Scanning)

เคยเป็นมั้ยว่าเจอบทความภาษาอังกฤษทีไร ปวดหัวทุกที ทั้งเยอะและยาว เมื่อไหร่จะอ่านจบกว่าจะตอบได้หมดเวลากันพอดี สวัสดีค่ะนักเรียนชั้นม.1 ทุกคน วันนี้ครูจะพาไปดูเทคนิคการอ่านเพื่อจับใจความสำคัญ โดยใช้วิธีการที่เรียกว่า อ่านแบบเร็ว (จ๊วด …) หรือ Speed Reading (ภาษาอีสาน จ๊วด แปลว่า เร็วเหมือนเสียงปล่อยจรวด) ถ้าเราสามารถอ่านได้เร็วเหมือนจรวดคงเป็นสิ่งที่ดีมาก ไปจ๊วดกันเลยกับเทคนิคอ่านเร็วทุกคน ก่อนอื่นจะต้องรู้จักกับประเภทของ Speed Reading กันก่อนค่ะ การอ่านแบบจับใจความสำคัญส่วนใหญ่แล้วเราจะเจอ

หลักการใช้ Simple Present Tense+ Present Continuous Tense

สวัสดีนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง” หลักการใช้ Simple Present Tense+ Present Continuous Tense” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว และเทคนิคการจำและนำ Tense ไปใช้กันจร้า ซึ่ง Simple Present Tenseและ Present Continuous Tense นั้นมีสิ่งที่เหมือนกันคือ อยู่ในรูปปัจจุบัน (Present) เหมือนกัน

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

ประพจน์และการเชื่อมประพจน์

บทความนี้เป็นเนื้อหาเกี่ยวกับประพจน์ การเชื่อมประพจน์ และการหาค่าความจริง ซึ่งเนื้อหาเหล่านี้เป็นภาษาของคณิตศาสตร์ เราจะเห็นตัวเชื่อมประพจน์ในทฤษฎีบทต่างๆในคณิตศาสตร์ หลังจากอ่านบทความนี้ น้องๆจะสามารถบอกได้ว่าข้อความไหนเป็นหรือไม่เป็นประพจน์ และน้องๆจะสามารถทำข้อสอบเกี่ยวกับตรรกศาสตร์ได้

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1