รากที่สอง

การหารากที่สองของจำนวนจริงทำได้หลายวิธี สำหรับวิธีการคำนวณ นักเรียนจะได้เรียนในระดับชั้นที่สูงกว่านี้ สำหรับในชั้นนี้ นักเรียนอาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง
รากที่สอง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

วิธีการถอดกรณฑ์หรือรากที่สองนั้นไม่ได้ยากเหมือนหน้าตาของมันเลย การจะถอดรากที่สองนั้นคุณแค่ต้องแยกตัวประกอบตัวเลขแล้วดึงรากของจำนวนกำลังสองสมบูรณ์ใดๆ ที่หาได้ในเครื่องหมายกรณฑ์นั้น พอคุณเริ่มจำจำนวนกำลังสองสมบูรณ์ที่พบบ่อยไม่กี่ตัวนั้นได้และรู้วิธีแยกตัวประกอบของตัวเลขแล้ว คุณก็กำลังอยู่ในเส้นทางที่จะถอดรากที่สองได้แล้ว

นิยามของรากที่สอง

ให้ a แทนจำนวนจริงบวกใด ๆ หรือศูนย์ รากที่สองของ a คือจำนวนจริงที่ยกกำลังสองแล้วได้ a

สำหรับรากที่สองของจำนวนจริงลบจะไม่กล่าวถึง ณ ที่นี้เพราะไม่มีจำนวนจริงใดที่ยกกำลังสองแล้วได้จำนวนจริงลบ แต่จะกล่าวถึงในการเรียนขั้นสูงต่อไป

ตัวอย่างของรากที่สอง

-7 เป็นรากที่สองของ 49              เพราะ (-7)2 = 49

10 เป็นรากที่สองของ 100             เพราะ 102 = 100

25 เป็นรากที่สองของ 625            เพราะ 252 =  625

-25 เป็นรากที่สองของ 625           เพราะ (-25) = 625

ดังนั้นถ้า a เป็นจำนวนจริงบวก รากที่สองของ a มี 2 ราก คือรากที่สองที่เป็นบวก และรากที่สองที่เป็นลบ

และถ้า a = 0 รากที่สองของ a คือ 0

สแควรูท

จากตัวอย่างทั้งสามข้อจะเห็นว่า รากที่สองของบางจำนวนเป็นจำนวนตรรกยะ และรากที่สองของบางจำนวนเป็นจำนวนอตรรกยะ

รากที่สอง

การหาค่ารากที่สองของจำนวนจริงบวกใด ๆ การจัดให้อยู่ในรูปกำลังสองจะทำให้หาผลลัพธ์ได้รวดเร็วดังนั้นจึงนิยมจัดรูปเป็นกำลังสอง แต่เนื่องจากจำนวนที่ยกกำลังแล้วได้จำนวนจริงบวกที่ต้องการมีหลายจำนวนเช่น

ตัวอย่างรากที่สอง

ดังนั้นเพื่อจัดอยู่ในรูปทั่วไปจึงกำหนดนิยามเพิ่มเติมต่อไปนี้

นิยามรากที่สอง

สรุปรากที่สอง

 การหารากที่สองของจำนวนเต็มบวก

  1. ถ้าสามารถหาจำนวนเต็มบวกจำนวนหนึ่งที่ยกกำลังสองแล้วเท่ากับจำนวนเต็มบวกที่กำหนดให้รากที่สองของจำนวนนั้นจะเป็นจำนวนตรรกยะที่เป็นจำนวนเต็ม
  2. ถ้าไม่สามารถหาจำนวนเต็มบวกที่ยกกำลังสองแล้วเท่ากับจำนวนเต็มบวกที่กำหนดให้รากที่สองของจำนวนจะเป็นจำนวนอตรรกยะ

รากที่สองของจำนวนเต็มบวก

จำนวนตรรกยะอื่น ๆ ที่ไม่ใช่จำนวนเต็มพิจารณาดังนี้ถ้าสามารถหาจำนวนตรรกยะที่ยกกำลังสองแล้วเท่ากับจำนวนตรรกยะบวกที่กำหนดให้รากที่สองของจำนวนนั้นจะเป็นจำนวนตรรกยะ แต่ถ้าไม่สามารถหาจำนวนตรรกยะที่ยกกำลังสองแล้วเท่ากับจำนวนตรรกยะบวกที่กำหนดให้รากที่สองของจำนวนนั้นจะเป็นจำนวนอตรรกยะ

รากที่สองของจำนวนเต็มบวก

การหาค่าของรากที่สอง

1.การหาค่าของรากที่สองโดยวิธีการแยกตัวประกอบ ใช้สำหรับจำนวนจริงที่สามารถแจกตัวประกอบได้เป็นจำนวนตรรกยะ ซึ่งพิจารณาได้ดังตัวอย่างต่อไปนี้

หาค่ารากที่สอง

2. การหาค่าของรากที่สองจากตาราง ซึ่งตารางนี้มีผู้สร้างขึ้นเพื่อความสะดวกในการนำไปใช้ โดยตารางนี้เป็นการแสดงรากที่สองที่เป็นบวกของจำนวนเต็มบวก

ตารางค่าของรากที่สอง3.การหาค่ารากที่สองดดวิธีการตั้งหาร มีหลักการดังนี้

3.1 แบ่งจำนวนที่ต้องการหาค่ารากที่สองออกเป็นชุดๆ ชุดละ 2ตัว โดยตัวเลขหน้าจุดแบ่งจากขวามาซ้าย และเลขหลังจุดแบ่งจากซ้ายไปขวา เช่น

รากที่สอง3.2 นำจำนวนที่ต้องการหารากที่สองมาหารยาว โดยมีวิธีการดังตัวอย่างต่อไปนี้

รากที่สอง

ตัวอย่างคลิปเรื่องรากที่สอง

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_Profile ม2 มารู้จักกับ (Connective Words)

 การใช้ตัวเชื่อม (Connective words)

Getting Started! มาเริ่มกันเลย   สวัสดีค่ะนักเรียน ม.3 ทุกคน วันนี้ครูจะพาไป ทบทวนงานเรื่อง  การใช้ตัวเชื่อม (Connective words) ที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อมในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay

NokAcademy_ม3 มารู้จักกับ Signal Words

การใช้ Signal words : First, Second, Firstly, Secondly, Finally, Then, Next etc.

มารู้จักกับ Signal Words หรือ อีกชื่อที่รู้จักกันคือ Connective Words: คำเชื่อมประโยค/วลี ในภาษาอังกฤษ สวัสดีค่ะนักเรียน ม.3 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อม (connective words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing)

สมบัติการบวกจำนวนจริง

สมบัติการบวกจำนวนจริง สมบัติการบวกจำนวนจริง เป็นสมบัติที่น้องๆต้องรู้ เพราะเป็นรากฐานของวิชาคณิตศาสตร์และน้องๆจะต้องใช้สมบัติพวกนี้ในการเรียนคณิตศาสตร์ในระดับที่สูงขึ้น สมบัติการบวกของจำนวนจริง มีทั้งหมด 5 ข้อ ดังนี้   1.) สมบัติปิดการบวก  สมบัติปิดการบวก คือ การที่เรานำจำนวนจริง 2 ตัวมาบวกกัน เราก็ยังได้ผลลัพธ์เป็นจำนวนจริงเหมือนเดิม เช่น 1 + 2 = 3 จะเห็นว่า

การใช้ไวยากรณ์ Past Simple ในการตั้งคำถาม

เกริ่นนำ เกริ่นใจ อดีต ปัจจุบันและอนาคต ทั้งหมดนี้ล้วนแล้วได้รับความสำคัญในหลักไวยากรณ์ของภาษาอังกฤษ เอาเข้าจริง ภาษาไทยของเราเองก็มีอะไรในลักษณะนี้เหมือนกันนะ แต่จะไม่เด่นชัดในรูปประโยคจนรู้สึกว่าซับซ้อนเหมือนภาษาอังกฤษที่เรากำลังเรียน ตัวอย่างเช่น เมื่อวานไปไหนมา….หรือ ฉันไป…มา ในขณะที่ภาษาอังกฤษจะต้องมีการปรับโครงสร้างให้เป็นรูปอดีตด้วยการเปลี่ยนคำกริยาเป็นช่องที่ 2 ตัวอย่างเช่น Where “did” you go yesterday? หรือ I “went to…” เป็นต้น อย่างไรก็ดี

การทดลองสุ่มและเหตุการณ์

บทความนี้ได้รวบรวมความรู้เรื่อง การทดลองสุ่มและเหตุการณ์ ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ และอธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง การทดลองสุ่มและเหตุการณ์ น้องๆสามารถทบทวน ความน่าจะเป็น ได้ที่  ⇒⇒ ความน่าจะเป็น ⇐⇐ การทดลองสุ่ม การทดลองสุ่ม  คือ การทดลองซึ่งทราบว่าผลลัพธ์ที่จะเกิดขึ้นอาจจะเป็นอะไรได้บ้าง  แต่ไม่สามารถบอกได้อย่างถูกต้องแน่นอนว่าในแต่ละครั้งที่ทำการทดลอง  ผลที่เกิดขึ้นจากการทดลองจะเป็นอะไรในบรรดาผลลัพธ์ที่อาจเป็นไปได้เหล่านั้น  เช่น การโยนเหรียญซึ่งมีผลลัพธ์ที่จะเกิดขึ้นได้ 2 แบบ คือ หัวหรือก้อย เมื่อโยนเหรียญ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1