ความเท่ากันทุกประการของรูปเรขาคณิต

ในบทความนี้เราจะได้เรียนรู้การเท่ากันทุกประการในส่วนต่างๆของรูปเรขาคณิต และบทนิยามที่กล่าวถึงความเท่ากันทุกประการของรูปเรขาคณิต
ความเท่ากันทุกประการ

สารบัญ

ความเท่ากันทุกประการของรูปเรขาคณิตเกิดจากการสะท้อน การเลื่อนขนาน และการหมุน ซึ่งเป็นตัวอย่างของการเคลื่อนที่รูปเรขาคณิตซึ่งเป็นการแปลงตำแหน่งของรูปเรขาคณิตบนระนาบโดยที่ระยะระหว่างจุดสองจุดใด ๆของรูปนั้นไม่เปลี่ยนแปลง  หมายความถึงว่า รูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง

ความเท่ากันทุกประการของรูปเรขาคณิต

พิจารณารูปต่อไปนี้

เท่ากันทุกประการ

ถ้าเรากำหนดให้ A เป็นรูปต้นแบบ และ A เกิดการแปลงไปเป็นรูป B C และ D ซึ่งเกิดจากการ “เคลื่อนที่” รูป A ดังนี้

รูป B เกิดจากการสะท้อนที่แกน Y

รูป D เกิดจากการเลื่อนขนานไปตามแกน Y

รูป C เกิดจากการหมุนรูป A ไป 180 °รอบจุด O

การเคลื่อนที่รูปเรขาคณิตจากการแปลงดังกล่าวข้างต้น เป็นตัวอย่างหนึ่งของการเปลี่ยนตำแหน่งของรูปเรขาคณิตบนระนาบ โดยที่ระยะระหว่างจุดสองจุดใด ๆ ของรูปนั้นไม่เปลี่ยนแปลง

แสดงว่ารูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง และถ้าเราเคลื่อนรูป A B C และ D มาทับกัน รูปทั้งหมดก็สามารถทับกันได้สนิท เราถือว่ารูปทั้งหมดนั้นเท่ากันทุกประการ

บทนิยาม “รูปเรขาคณิตสองรูปเท่ากันทุกประการก็ต่อเมื่อเคลื่อนที่รูปหนึ่งไปทับอีกรูปหนึ่งได้สนิท”

นิยาม

การตรวจสอบว่ารูปเรขาคณิตสองรูปใดเท่ากันทุกประการหรือไม่อาจทำได้โดยใช้กระดาษลอกลายลอกรูปหนึ่งแล้วยกไปทับอีกรูปหนึ่งถ้าทับกันได้สนิทแสดงว่ารูปเรขาคณิตเท่ากันทุกประการ

ความเท่ากันทุกประการของส่วนของเส้นตรง

ส่วนของเส้นตรงสองเส้นเท่ากันทุกประการก็ต่อเมื่อส่วนของเส้นตรงทั้งสองนั้นยาวเท่ากัน

ความเท่ากันทุกประการของเส้นตรง

จากรูป AB เท่ากันทุกประการกับ CD แต่เวลาเขียนเป็นสัญลักษณ์ไม่นิยมเขียนว่า AB = CD จะเขียนเพียง AB = CD เท่านั้น

ความเท่ากันทุกประการของมุม

มุมสองมุมเท่ากันทุกประการก็ต่อเมื่อมุมทั้งสองมุมนั้นมีขนาดเท่ากัน

ความเท่ากันทุกประการของมุม

จากรูป ถ้า <ABC = <DEF แล้ว <ABC = <DEF และการเขียนสัญลักษณ์แทนการเท่ากันทุกประการของมุมจะเขียนเพียง <ABC = <DEF เท่านั้น

ข้อสังเกต

  1. เส้นตรงสองเส้นตัดกันจะเกิดมุมที่เท่ากันทุกประการ 2 คู่เรียกว่า “มุมตรงข้าม”

  1. ถ้ากำหนดให้รูป A = B และรูป B = C แล้วจะได้ว่ารูป A = รูป C
  2. รูปสี่เหลี่ยมผืนผ้าที่มีพื้นที่เท่ากัน อาจจะไม่เท่ากันทุกประการ เช่น รูปทั้งสองมี พื้นที่ 18 ตารางหน่วย รูปแรกอาจจะมีขนาด 2×9 ตารางหน่วยและรูปที่ 2 อาจจะมีขนาด 3 X 6 ตารางหน่วยเป็นต้น
  3. รูปสามเหลี่ยมสองรูปที่มีมุมเท่ากัน 3 คู่อาจจะไม่เท่ากันทุกประการ เช่น

  1. วงกลม 2 วงที่มีรัศมียาวเท่ากันจะเท่ากันทุกประการ
  2. รังสี 2 เส้นใด ๆ จะเท่ากันทุกประการ
  3. รูปสี่เหลี่ยมจัตุรัส 2 รูปที่มีพื้นที่เท่ากันจะเท่ากันทุกประการ

สมบัติอื่นๆของความเท่ากันทุกประการ

คลิปตัวอย่างเรื่องความเท่ากันทุกประการ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ม.3 สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สวัสดีค่ะนักเรียนชั้นม. 3 ที่น่ารักทุกคน วันนี้ครูจะพาไปตะลุย “สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ พร้อมทั้งเทคนิคการพูดตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า สำนวนการเสนอ   ในชีวิตประจำวันของเรานั้น ล้วนจะต้องเจอกลุ่มประโยคคำถามในเชิงชักชวน และการเสนอแนะที่ใช้เป็นรูปแบบคำถามนั้นถือเป็นการเสนอแนะชักชวนทางอ้อม ถ้าเทียบกับนิสัยคนไทยแล้ว ก็เพื่อแสดงถึงความเกรงใจ ไม่พูดมาตรงๆ เพื่อจุดประสงคืบางอย่าง ซึ่งเป็นนิสัยที่คนไทยส่วนใหญ่มีอยู่แล้ว ในภาษาอังกฤษการใช้ภาษาเหล่านี้จะทำให้การสนทนาดูเป็นธรรมชาติและคล่องมากขึ้น โดยที่บางครั้งผู้ถามนั้นหว่านล้อมผู้ฟังด้วยการ ชวนให้ทำ หรือแนะนำให้ทำนั่นเอง ประโยคคำถามที่ใช้มีดังนี้  

Direct Object

Direct and Indirect Objects

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Direct และ Indirect Objects กันครับว่าคืออะไร ถ้าพร้อมแล้วไปดูกันเลย

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้ นิยาม ให้  x, y เป็นจำนวนจริง และ n

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์ ตัวผกผันของความสัมพันธ์ r คือความสัมพันธ์ใหม่ที่เกิดจากการสลับตำแหน่งของสมาชิกตัวหน้ากับสมาชิกตัวหลังของคู่อันดับทุกคู่ในความสัมพันธ์ r เขียนแทนด้วย   ซึ่ง = {(y, x) : (x, y ) ∈ r} เช่น r = {(1, 2), (3, 4), (5,

การแก้อสมการเชิงเส้นตัวแปรเดียว

การแก้อสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ หลักการแก้อสมการเชิงเส้นตัวแปรเดียว ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้ จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ) ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้