ความเท่ากันทุกประการของรูปเรขาคณิต

ในบทความนี้เราจะได้เรียนรู้การเท่ากันทุกประการในส่วนต่างๆของรูปเรขาคณิต และบทนิยามที่กล่าวถึงความเท่ากันทุกประการของรูปเรขาคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความเท่ากันทุกประการของรูปเรขาคณิตเกิดจากการสะท้อน การเลื่อนขนาน และการหมุน ซึ่งเป็นตัวอย่างของการเคลื่อนที่รูปเรขาคณิตซึ่งเป็นการแปลงตำแหน่งของรูปเรขาคณิตบนระนาบโดยที่ระยะระหว่างจุดสองจุดใด ๆของรูปนั้นไม่เปลี่ยนแปลง  หมายความถึงว่า รูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง

ความเท่ากันทุกประการของรูปเรขาคณิต

พิจารณารูปต่อไปนี้

เท่ากันทุกประการ

ถ้าเรากำหนดให้ A เป็นรูปต้นแบบ และ A เกิดการแปลงไปเป็นรูป B C และ D ซึ่งเกิดจากการ “เคลื่อนที่” รูป A ดังนี้

รูป B เกิดจากการสะท้อนที่แกน Y

รูป D เกิดจากการเลื่อนขนานไปตามแกน Y

รูป C เกิดจากการหมุนรูป A ไป 180 °รอบจุด O

การเคลื่อนที่รูปเรขาคณิตจากการแปลงดังกล่าวข้างต้น เป็นตัวอย่างหนึ่งของการเปลี่ยนตำแหน่งของรูปเรขาคณิตบนระนาบ โดยที่ระยะระหว่างจุดสองจุดใด ๆ ของรูปนั้นไม่เปลี่ยนแปลง

แสดงว่ารูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง และถ้าเราเคลื่อนรูป A B C และ D มาทับกัน รูปทั้งหมดก็สามารถทับกันได้สนิท เราถือว่ารูปทั้งหมดนั้นเท่ากันทุกประการ

บทนิยาม “รูปเรขาคณิตสองรูปเท่ากันทุกประการก็ต่อเมื่อเคลื่อนที่รูปหนึ่งไปทับอีกรูปหนึ่งได้สนิท”

นิยาม

การตรวจสอบว่ารูปเรขาคณิตสองรูปใดเท่ากันทุกประการหรือไม่อาจทำได้โดยใช้กระดาษลอกลายลอกรูปหนึ่งแล้วยกไปทับอีกรูปหนึ่งถ้าทับกันได้สนิทแสดงว่ารูปเรขาคณิตเท่ากันทุกประการ

ความเท่ากันทุกประการของส่วนของเส้นตรง

ส่วนของเส้นตรงสองเส้นเท่ากันทุกประการก็ต่อเมื่อส่วนของเส้นตรงทั้งสองนั้นยาวเท่ากัน

ความเท่ากันทุกประการของเส้นตรง

จากรูป AB เท่ากันทุกประการกับ CD แต่เวลาเขียนเป็นสัญลักษณ์ไม่นิยมเขียนว่า AB = CD จะเขียนเพียง AB = CD เท่านั้น

ความเท่ากันทุกประการของมุม

มุมสองมุมเท่ากันทุกประการก็ต่อเมื่อมุมทั้งสองมุมนั้นมีขนาดเท่ากัน

ความเท่ากันทุกประการของมุม

จากรูป ถ้า <ABC = <DEF แล้ว <ABC = <DEF และการเขียนสัญลักษณ์แทนการเท่ากันทุกประการของมุมจะเขียนเพียง <ABC = <DEF เท่านั้น

ข้อสังเกต

  1. เส้นตรงสองเส้นตัดกันจะเกิดมุมที่เท่ากันทุกประการ 2 คู่เรียกว่า “มุมตรงข้าม”

  1. ถ้ากำหนดให้รูป A = B และรูป B = C แล้วจะได้ว่ารูป A = รูป C
  2. รูปสี่เหลี่ยมผืนผ้าที่มีพื้นที่เท่ากัน อาจจะไม่เท่ากันทุกประการ เช่น รูปทั้งสองมี พื้นที่ 18 ตารางหน่วย รูปแรกอาจจะมีขนาด 2×9 ตารางหน่วยและรูปที่ 2 อาจจะมีขนาด 3 X 6 ตารางหน่วยเป็นต้น
  3. รูปสามเหลี่ยมสองรูปที่มีมุมเท่ากัน 3 คู่อาจจะไม่เท่ากันทุกประการ เช่น

  1. วงกลม 2 วงที่มีรัศมียาวเท่ากันจะเท่ากันทุกประการ
  2. รังสี 2 เส้นใด ๆ จะเท่ากันทุกประการ
  3. รูปสี่เหลี่ยมจัตุรัส 2 รูปที่มีพื้นที่เท่ากันจะเท่ากันทุกประการ

สมบัติอื่นๆของความเท่ากันทุกประการ

คลิปตัวอย่างเรื่องความเท่ากันทุกประการ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้เทคนิคที่จะช่วยให้การเขียน ผังมโนภาพ เป็นเรื่องง่ายๆ

  ผังมโนภาพ เป็นเทคนิคที่พัฒนาขึ้นจากจดบันทึกความคิด ความรู้ ความเข้าใจ น้อง ๆ หลายคนก็คงจะเคยได้รับโจทย์จากคุณครูให้เขียนแผนผังมโนภาพเพื่อทดสอบความเข้าใจ หลายคนอาจจะคิดว่าเป็นเรื่องยากที่จะเขียนออกมา แต่ทราบไหมคะว่าที่จริงแล้วมีวิธีการเขียนที่ง่ายมากแถมยังมีประโยชน์อีกด้วย จะเป็นอย่างไรไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ความหมายของผังมโนภาพ   ผังมโนภาพเป็นแผนผังหรือแผนภาพที่แสดงความสัมพันธ์ของมโนทัศน์หรือความคิดรวบยอด ที่เริ่มจากความคิดหลัก ซึ่งทำหน้าที่เป็นชื่อเรื่อง แล้วแตกแขนงไปสู่ความคิดย่อย ๆ กระจายออกไปโดยรอบ ทำให้เกิดภาพเชื่อมโยงขององค์ความรู้เรื่องใดเรื่องหนึ่งในทุกแง่มุม   วิธีเขียนแผนผังมโนภาพ   ผังมโนภาพเป็นผังที่แสดงความสัมพันธ์ของสาระหรือความคิดต่าง

ศึกษา นิทานเวตาล เรื่องที่10 และคุณค่าที่ซ่อนอยู่ในเรื่อง

​ นิทานเวตาล เป็นนิทานเรื่องเล่าที่แฝงไปด้วยคุณค่าและคติธรรมมากมาย หากแต่เต็มไปด้วยคุณค่า สำหรับฉบับแปลไทยของกรมหมื่นพิทยาลงกรณ์มีด้วยกัน 10 เรื่อง เรื่องที่อยู่ในแบบเรียนภาษาไทย คือเรื่องสุดท้าย ดังนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับตัวบทเด่น ๆ ที่น่าสนใจในนิทานเรื่องนี้เพื่อถอดความหมายและศึกษาคุณค่าทั้งด้านวรรณศิลป์ ด้านเนื้อหา และข้อคิดที่ได้จากเรื่อง ถ้าพร้อมแล้วไปเรียนรู้เรื่องนี้ด้วยเลยค่ะ   ตัวบทเด่นใน นิทานเวตาล เรื่องที่10   บทที่ 1  

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่ง คือ การนำเสนอข้อมูลที่ได้มีการเก็บรวบรวมข้อมูลไว้โดยใช้รูปสี่เหลี่ยมมุมฉาก ซึ่งเเต่ละรูปมีความกว้างเท่ากัน เเละใช้ความสูงหรือความยาวเเสดงปริมาณของข้อมูล เเต่จุดเริ่มต้นจะต้องเริ่มในระดับเดียวกันเสมอ อาจอยู่ในเเนวตั้งหรือเเนวนอนก็ได้ การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยแผนภูมิแท่งเปรียบเทียบ คือ การนำเสนอข้อมูลโดยเปรียบเทียบข้อมูลตั้งเเต่ 2 ชุดขึ้นไปในแผนภูมิเดียวกัน โดยมีเเท่งสี่เหลี่ยมที่เเสดงข้อมูลชนิดเดียวกันอยู่ด้วยกันเป็นชุดๆ เเละมีสีหรือเเรเงาในเเท่งสี่เหลี่ยมต่างกัน เเละระบุไว้บนเเผนภูมิด้วยว่าสีหรือเเรเงานั้น ๆ เป็นข้อมูลของอะไร ตัวอย่างของแผนภูมิเเท่งเปรียบเทียบ ส่วนประกอบของเเผนภูมิแท่ง: 1. ชื่อแผนภูมิ 2. จำนวน 3.

การใช้ There is และ There are ในประโยคคำถาม

สวัสดีค่ะนักเรียนชั้น ม.2 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ There is There are ในประโยคคำถาม ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ   There is/There are คืออะไร   There is และ There are แปลว่า

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ บทนิยาม ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า  f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ และ ใดๆใน A ถ้า  < 

ความสัมพันธ์

ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1