ความเท่ากันทุกประการของรูปเรขาคณิต

ในบทความนี้เราจะได้เรียนรู้การเท่ากันทุกประการในส่วนต่างๆของรูปเรขาคณิต และบทนิยามที่กล่าวถึงความเท่ากันทุกประการของรูปเรขาคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความเท่ากันทุกประการของรูปเรขาคณิตเกิดจากการสะท้อน การเลื่อนขนาน และการหมุน ซึ่งเป็นตัวอย่างของการเคลื่อนที่รูปเรขาคณิตซึ่งเป็นการแปลงตำแหน่งของรูปเรขาคณิตบนระนาบโดยที่ระยะระหว่างจุดสองจุดใด ๆของรูปนั้นไม่เปลี่ยนแปลง  หมายความถึงว่า รูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง

ความเท่ากันทุกประการของรูปเรขาคณิต

พิจารณารูปต่อไปนี้

เท่ากันทุกประการ

ถ้าเรากำหนดให้ A เป็นรูปต้นแบบ และ A เกิดการแปลงไปเป็นรูป B C และ D ซึ่งเกิดจากการ “เคลื่อนที่” รูป A ดังนี้

รูป B เกิดจากการสะท้อนที่แกน Y

รูป D เกิดจากการเลื่อนขนานไปตามแกน Y

รูป C เกิดจากการหมุนรูป A ไป 180 °รอบจุด O

การเคลื่อนที่รูปเรขาคณิตจากการแปลงดังกล่าวข้างต้น เป็นตัวอย่างหนึ่งของการเปลี่ยนตำแหน่งของรูปเรขาคณิตบนระนาบ โดยที่ระยะระหว่างจุดสองจุดใด ๆ ของรูปนั้นไม่เปลี่ยนแปลง

แสดงว่ารูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง และถ้าเราเคลื่อนรูป A B C และ D มาทับกัน รูปทั้งหมดก็สามารถทับกันได้สนิท เราถือว่ารูปทั้งหมดนั้นเท่ากันทุกประการ

บทนิยาม “รูปเรขาคณิตสองรูปเท่ากันทุกประการก็ต่อเมื่อเคลื่อนที่รูปหนึ่งไปทับอีกรูปหนึ่งได้สนิท”

นิยาม

การตรวจสอบว่ารูปเรขาคณิตสองรูปใดเท่ากันทุกประการหรือไม่อาจทำได้โดยใช้กระดาษลอกลายลอกรูปหนึ่งแล้วยกไปทับอีกรูปหนึ่งถ้าทับกันได้สนิทแสดงว่ารูปเรขาคณิตเท่ากันทุกประการ

ความเท่ากันทุกประการของส่วนของเส้นตรง

ส่วนของเส้นตรงสองเส้นเท่ากันทุกประการก็ต่อเมื่อส่วนของเส้นตรงทั้งสองนั้นยาวเท่ากัน

ความเท่ากันทุกประการของเส้นตรง

จากรูป AB เท่ากันทุกประการกับ CD แต่เวลาเขียนเป็นสัญลักษณ์ไม่นิยมเขียนว่า AB = CD จะเขียนเพียง AB = CD เท่านั้น

ความเท่ากันทุกประการของมุม

มุมสองมุมเท่ากันทุกประการก็ต่อเมื่อมุมทั้งสองมุมนั้นมีขนาดเท่ากัน

ความเท่ากันทุกประการของมุม

จากรูป ถ้า <ABC = <DEF แล้ว <ABC = <DEF และการเขียนสัญลักษณ์แทนการเท่ากันทุกประการของมุมจะเขียนเพียง <ABC = <DEF เท่านั้น

ข้อสังเกต

  1. เส้นตรงสองเส้นตัดกันจะเกิดมุมที่เท่ากันทุกประการ 2 คู่เรียกว่า “มุมตรงข้าม”

  1. ถ้ากำหนดให้รูป A = B และรูป B = C แล้วจะได้ว่ารูป A = รูป C
  2. รูปสี่เหลี่ยมผืนผ้าที่มีพื้นที่เท่ากัน อาจจะไม่เท่ากันทุกประการ เช่น รูปทั้งสองมี พื้นที่ 18 ตารางหน่วย รูปแรกอาจจะมีขนาด 2×9 ตารางหน่วยและรูปที่ 2 อาจจะมีขนาด 3 X 6 ตารางหน่วยเป็นต้น
  3. รูปสามเหลี่ยมสองรูปที่มีมุมเท่ากัน 3 คู่อาจจะไม่เท่ากันทุกประการ เช่น

  1. วงกลม 2 วงที่มีรัศมียาวเท่ากันจะเท่ากันทุกประการ
  2. รังสี 2 เส้นใด ๆ จะเท่ากันทุกประการ
  3. รูปสี่เหลี่ยมจัตุรัส 2 รูปที่มีพื้นที่เท่ากันจะเท่ากันทุกประการ

สมบัติอื่นๆของความเท่ากันทุกประการ

คลิปตัวอย่างเรื่องความเท่ากันทุกประการ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม การแยกตัวประกอบพหุนาม เป็นการแยกตัวประกอบของสมการเพื่อให้ง่ายต่อการหาคำตอบของสมการที่จะต้องเรียนในเนื้อหาถัดไป ในบทความนี้จะพูดถึงพหุนามดีกรี 2 ตัวแปรเดียว พหุนามดีกรี 2 คือ พหุนามที่มีเลขยกกำลังสูงสุด คือ 2 พหุนามดีกรี 2 ตัวแปรเดียว คือ พหุนามที่มีเลขยกกำลังสูงสุดคือ 2 และ มีตัวแปร 1 ตัว เขียนอยู่ในรูป ax² +

บทเสภาสามัคคีเสวก

บทเสภาสามัคคีเสวก ที่มาของกลอนเสภาอันทรงคุณค่า

บทเสภาสามัคคีเสวก   เมื่อเห็น บทเสภาสามัคคีเสวก ครั้งแรก เชื่อว่าต้องมีน้อง ๆ หลายคนต้องเผลออ่านคำว่า เสวก เป็น (สะ-เหวก) แน่ ๆ เลยใช่ไหมคะ แต่ที่จริงแล้วคำว่าเสวกนั้นต้องอ่านให้ถูกต้องว่า (เส-วก) ที่มีความหมายถึงผู้ใกล้ชิด เป็นยศของข้าราชการในราชสำนักนั่นเองค่ะ บทเรียนภาษาไทยในวันนี้ไม่เพียงแต่จะสอนอ่านให้ถูกต้อง แต่จะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาของเรื่องย่อวรรณคดีไทยอย่างบทเสภาสามัคคีเสวกกันอีกด้วย โดยจะเป็นเรื่องราวแบบไหน มีลักษณะคำประพันธ์และเรื่องย่ออย่างไรบ้าง เราไปศึกษาเรื่องนี้พร้อม

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์ (1) ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง

Pronunciation Matters: มาเรียนรู้การออกเสียงพยัญชนะในภาษาอังกฤษกันเถอะ

เชื่อว่าน้องๆ หลายคนที่เรียนภาษาอังกฤษจะต้องได้เรียนการออกเสียงที่ถูกต้องทั้งเสียงพยัญชนะและสระกันมาแล้วบ้าง วันนี้เราจะมาทบทวนและดูตัวอย่างเสียงพยัญชนะ (Consonant Sounds) ในภาษาอังกฤษกันว่าตัวไหนออกเสียงแบบใดได้บ้าง

โจทย์ปัญหาการนำเสนอข้อมูล

โจทย์ปัญหาการนําเสนอข้อมูล

บทความนี้จะยกตัวอย่างเกี่ยวกับโจทย์ปัญหาการนำเสนอข้อมูลให้น้องๆทราบถึงวิธีคิดหรือวิธีทำเพื่อหาคำตอบที่ถูกต้อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1