การหมุน

การแปลงทางเรขาคณิตโดยการหมุน ( Rotation ) เป็นการแปลงที่จุดทุกจุดของรูปต้นแบบเคลื่อนที่ไปเป็นมุมเดียวกันรอบจุดตรึงอยู่กับที่ ที่กำหนดหรือจุดหมุน การหมุนจะหมุนทวนเข็มนาฬิกาหรือตามเข็มนาฬิกา

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การประยุกต์ของการแปลงทางเรขาคณิตเป็นการเปลี่ยนตำแหน่งของรูปเรขาคณิต โดยลักษณะและขนาดของรูปยังคงเดิม โดยใช้การหมุนเช่นเดียวกับการที่เราเคลื่อนที่ของสิ่งของโดยการหมุนไปในทิศทางตามเข็มนาฬิกาหรือทวนเข็มนาฬิกา

รูปแบบการหมุน

การหมุนบนระนาบเป็นการแปลงทางเรขาคณิตที่มีจุด O ที่ตรึงจุดหนึ่งเป็นจุดหมุนแต่ละจุด P บนระนาบมีจุด P เป็นภาพที่ได้จากการหมุนจุด P รอบจุด O ตามทิศทางที่กำหนดด้วยมุมที่มีจุดขนาด k โดยที่

  1. ถ้าจุด P ไม่ใช่จุด O แล้ว OP = OP’ และขนาดของ PÔP’ = k
  2. ถ้าจุด P เป็นจุดเดียวกันกับจุด O แล้ว P เป็นจุดหมุน

ตัวอย่างภาพที่เกิดจากการหมุน

หมุนตามเข็ม

สมบัติการหมุน

  1. สามารถเลื่อนรูปต้นแบบทับภาพที่ได้จากการหมุนได้สนิทโดยไม่ต้องพลิกรูปหรือกล่าวได้ว่ารูปต้นแบบกับภาพที่ได้จากการหมุนเท่ากันทุกประการ
  2. ส่วนของเส้นตรงบนรูปต้นแบบและภาพที่ได้จากการหมุนส่วนของเส้นตรงนั้นไม่จำเป็นต้องขนานกันทุกคู่
  3. จุดบนรูปต้นแบบและภาพที่ได้จากการหมุนจุดนั้นแต่ละคู่จะอยู่บนวงกลมที่มีจุดหมุนเป็นจุดศูนย์กลางเดียวกัน แต่วงกลมเหล่านี้ไม่จำเป็นต้องมีรัศมียาวเท่ากัน

การพิจารณาว่ารูปที่กำหนดให้เป็นผลจากการหมุนรูปอีกรูปหนึ่งหรือไม่สามารถพิจารณาตามเงื่อนไข 2 ข้อคือ

  1. สามารถเลื่อนรูปหนึ่งไปทับอีกรูปหนึ่งได้สนิทโดยไม่ต้องมีการพลิกรูป
  2. สามารถหาจุดหมุนทิศทางการหมุนและขนาดของมุมที่หมุนได้

       ถ้าผลจากการแปลงสอดคล้องกับเงื่อนไขทั้งสองข้อแล้วการแปลงนั้นจัดเป็นการหมุนถ้าไม่สอดคล้องกับข้อใดข้อหนึ่งถือว่าไม่ใช่การหมุน

การหาภาพจากการหมุน

ตัวอย่างที่ 1 การหาภาพของ สามเหลี่ยมABC ที่เกิดจากการหมุนรอบจุด O ซึ่งไม่อยู่ในรูปสามเหลี่ยมไปการหาภาพจากการหมุน 90°ทิศตามเข็มนาฬิกา

ภาพการหมุน

ตัวอย่างที่ 2 การหาภาพของ สามเหี่ยมABC ที่เกิดจากการหมุนรอบจุด O ซึ่งไม่อยู่ใน สามเหลี่ยมABC โดยหมุนไป 180°ทิศตามเข็มนาฬิกา

ตัวอย่างการหมุน

ตัวอย่างที่ 3 การหาภาพการหมุน สามเหลี่ยมABC รอบจุด A ทิศตามเข็มนาฬิกาไป 90°ทิศตามเข็นนาฬิกา

การหาจุดหมุนและทิศทางการหมุน

ตัวอย่าง กำหนด สามเหลี่ยมA’B’C’ เป็นภาพที่ได้จากการหมุน สามเหลี่ยมABC จงหาจุดหมุนและทิศทางการหมุน

แนวคิด การหาจุดหมุนทำได้โดยการสร้างเส้นตรงสองเส้นให้แต่ละเส้นตั้งฉากกันและแบ่งครึ่งซึ่งกันและกันกับส่วนของเส้นตรงที่เชื่อมระหว่างจุดที่สมนัยกันบนรูปต้นแบบและบนภาพที่ได้จากการหมุนจุดตัดของเส้นตรงทั้งสองคือจุดหมุนดังรูป

การหาจุดหมุน

จุดหมุน

คลิปตัวอย่างเรื่องการหมุน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Quantity words

การใช้ Quantity words

Hi guys! สวัสดีค่ะนักเรียนชั้นม.1 ทุกคนวันนี้เราจะไปเรียนรู้ “การใช้ Quantity words ” ในภาษาอังกฤษกันค่ะ Let’s go! ไปลุยกันโลด Quantity words คืออะไร “Quantity words” คือคำบอกปริมาณนั่นเอง เช่น much, many, few, a few, lots

เสียงสระในภาษาไทย

เสียงในภาษาไทยมีทั้งหมด 3  เสียงคือพยัญชนะ สระ และวรรณยุกต์ จากที่เราได้ทำความเข้าใจในเรื่องเสียงพยัญชนะกันไปแล้ว วันนี้เราจะมาเรียนรู้อีกเสียงหนึ่งที่มีความสำคัญไม่แพ้กันก็คือเรื่องเสียงสระนั่นเองค่ะ เสียงสระจะมีกี่ชนิด แบ่งเป็นชนิดใดบ้าง ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ     เสียงสระ เสียงสระเป็นเสียงที่เกิดจากลมภายในปอด เปล่งออกมาโดยใช้การเคลื่อนไหวของลิ้นและริมฝีปาก เสียงที่ได้จะแบ่งออกได้ดังนี้ค่ะ สระเดี่ยว สระเดี่ยวหรือสระแท้ มีทั้งหมด 18 เสียง เสียงสั้นและเสียงยาวจับกันได้ 9

การวัด

การวัดและความเป็นมาของการวัด

ในบทความนี้เราจะได้เรียนรู้ความเป็นมาของการวัดในหลายๆมิติ จนกระทั่งวิวัฒนาการที่ทำให้ได้ความแม่นยำในการวัดอย่างเป็นมาตรฐานมากขึ้นเรื่อยๆ

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์ ค่าของฟังก์ชันไซน์และโคไซน์ จะเกี่ยวข้องกับ θ พิกัดของ จุด (x, y) ซึ่งในบทความนี้จะอธิบายเกี่ยวกับ ความสัมพันธ์ระหว่าง x, y กับ θ จากบทความที่ผ่านมาเราได้รู้จักวงกลมหนึ่งหน่วยและการวัดความยาวส่วนโค้ง ในบทความนี้น้องๆจะได้รู้จักกับฟังก์ชันไซน์ (sine function) และฟังก์ชันโคไซน์ (cosine function) และวิธีการหาค่าของฟังก์ชันทั้งสอง Sine function =

การใช้ going to / will ในการสร้างประโยค

การใช้ going to / will ในการสร้างประโยค เกริ่นนำเกริ่นใจ   ภาพใหญ่ของ Will และ Be going to การจะเข้าใจอะไรได้อย่างมั่นใจและคล่องตามากขึ้น เราในฐานะผู้เรียนรู้ควรที่จะต้องเห็นภาพรวมทั้งหมดก่อน โดย Will เนี่ย อยู่ในตระกูล Auxiliary verb หรือ Helping verb

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1