การหมุน

การแปลงทางเรขาคณิตโดยการหมุน ( Rotation ) เป็นการแปลงที่จุดทุกจุดของรูปต้นแบบเคลื่อนที่ไปเป็นมุมเดียวกันรอบจุดตรึงอยู่กับที่ ที่กำหนดหรือจุดหมุน การหมุนจะหมุนทวนเข็มนาฬิกาหรือตามเข็มนาฬิกา

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การประยุกต์ของการแปลงทางเรขาคณิตเป็นการเปลี่ยนตำแหน่งของรูปเรขาคณิต โดยลักษณะและขนาดของรูปยังคงเดิม โดยใช้การหมุนเช่นเดียวกับการที่เราเคลื่อนที่ของสิ่งของโดยการหมุนไปในทิศทางตามเข็มนาฬิกาหรือทวนเข็มนาฬิกา

รูปแบบการหมุน

การหมุนบนระนาบเป็นการแปลงทางเรขาคณิตที่มีจุด O ที่ตรึงจุดหนึ่งเป็นจุดหมุนแต่ละจุด P บนระนาบมีจุด P เป็นภาพที่ได้จากการหมุนจุด P รอบจุด O ตามทิศทางที่กำหนดด้วยมุมที่มีจุดขนาด k โดยที่

  1. ถ้าจุด P ไม่ใช่จุด O แล้ว OP = OP’ และขนาดของ PÔP’ = k
  2. ถ้าจุด P เป็นจุดเดียวกันกับจุด O แล้ว P เป็นจุดหมุน

ตัวอย่างภาพที่เกิดจากการหมุน

หมุนตามเข็ม

สมบัติการหมุน

  1. สามารถเลื่อนรูปต้นแบบทับภาพที่ได้จากการหมุนได้สนิทโดยไม่ต้องพลิกรูปหรือกล่าวได้ว่ารูปต้นแบบกับภาพที่ได้จากการหมุนเท่ากันทุกประการ
  2. ส่วนของเส้นตรงบนรูปต้นแบบและภาพที่ได้จากการหมุนส่วนของเส้นตรงนั้นไม่จำเป็นต้องขนานกันทุกคู่
  3. จุดบนรูปต้นแบบและภาพที่ได้จากการหมุนจุดนั้นแต่ละคู่จะอยู่บนวงกลมที่มีจุดหมุนเป็นจุดศูนย์กลางเดียวกัน แต่วงกลมเหล่านี้ไม่จำเป็นต้องมีรัศมียาวเท่ากัน

การพิจารณาว่ารูปที่กำหนดให้เป็นผลจากการหมุนรูปอีกรูปหนึ่งหรือไม่สามารถพิจารณาตามเงื่อนไข 2 ข้อคือ

  1. สามารถเลื่อนรูปหนึ่งไปทับอีกรูปหนึ่งได้สนิทโดยไม่ต้องมีการพลิกรูป
  2. สามารถหาจุดหมุนทิศทางการหมุนและขนาดของมุมที่หมุนได้

       ถ้าผลจากการแปลงสอดคล้องกับเงื่อนไขทั้งสองข้อแล้วการแปลงนั้นจัดเป็นการหมุนถ้าไม่สอดคล้องกับข้อใดข้อหนึ่งถือว่าไม่ใช่การหมุน

การหาภาพจากการหมุน

ตัวอย่างที่ 1 การหาภาพของ สามเหลี่ยมABC ที่เกิดจากการหมุนรอบจุด O ซึ่งไม่อยู่ในรูปสามเหลี่ยมไปการหาภาพจากการหมุน 90°ทิศตามเข็มนาฬิกา

ภาพการหมุน

ตัวอย่างที่ 2 การหาภาพของ สามเหี่ยมABC ที่เกิดจากการหมุนรอบจุด O ซึ่งไม่อยู่ใน สามเหลี่ยมABC โดยหมุนไป 180°ทิศตามเข็มนาฬิกา

ตัวอย่างการหมุน

ตัวอย่างที่ 3 การหาภาพการหมุน สามเหลี่ยมABC รอบจุด A ทิศตามเข็มนาฬิกาไป 90°ทิศตามเข็นนาฬิกา

การหาจุดหมุนและทิศทางการหมุน

ตัวอย่าง กำหนด สามเหลี่ยมA’B’C’ เป็นภาพที่ได้จากการหมุน สามเหลี่ยมABC จงหาจุดหมุนและทิศทางการหมุน

แนวคิด การหาจุดหมุนทำได้โดยการสร้างเส้นตรงสองเส้นให้แต่ละเส้นตั้งฉากกันและแบ่งครึ่งซึ่งกันและกันกับส่วนของเส้นตรงที่เชื่อมระหว่างจุดที่สมนัยกันบนรูปต้นแบบและบนภาพที่ได้จากการหมุนจุดตัดของเส้นตรงทั้งสองคือจุดหมุนดังรูป

การหาจุดหมุน

จุดหมุน

คลิปตัวอย่างเรื่องการหมุน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

Adjective Profile

คำคุณศัพท์ (Adjective)

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาไปเรียนรู้เรื่อง คำคุณศัพท์ หรือ Adjective ในภาษาอังกฤษกันค่ะ พร้อมแล้วก็ไปลุยกันเลย   ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่

ป.5 ไวยากรณ์เรื่อง There is _ There are และ How many

ไวยากรณ์เรื่อง There is / There are และ How many

สวัสดีค่ะนักเรียนชั้น ป.5 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “ไวยากรณ์เรื่อง There is / There are และ How many” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ถามก่อนเรียน: อ้าวแล้ว Have/has ก็แปลว่า “มี” เหมือนกันไม่ใช่เหรอ แล้ว There is/There are

สามัคคีเภทคำฉันท์

สามัคคีเภทคำฉันท์ วรรณคดีขนาดสั้นที่ว่าด้วยความสามัคคี

สามัคคีเภทคำฉันท์ เป็นนิทานสุภาษิตขนาดสั้นว่าด้วยเรื่องความสามัคคี เป็นอีกหนึ่งวรรณคดีที่ได้รับการยกย่องว่าแต่งดี ทั้งด้านการประพันธ์และเนื้อหา เหตุใดจึงเป็นเช่นนั้น บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนไปทำความรู้จักกับวรรณคดีเรื่องดังกล่าวเพื่อศึกษาที่มา จุดประสงค์ รวมไปถึงเรื่องย่อ ถ้าพร้อมแล้วไปดูกันเลยค่ะ   ที่มาของเรื่องและจุดประสงค์ในการแต่ง   สามัคคีเภทคำฉันท์ ดำเนินเรื่องโดยอิงประวัติศาสตร์ครั้งพุทธกาล เป็นนิทานสุภาษิตในมหาปรินิพพานสูตรและอรรถกถาสุมังคลวิลาสินี     ในสมัยรัชกาลที่ 6 เกิดวิกฤตการณ์ทั้งภายในและภายนอกประเทศ เช่น เกิดสงครามโลกครั้งที่ 1

การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้นำเสนอ การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก โดยที่น้องๆจะได้รู้จักกับ บทนิยามของเลขยกกำลัง ซึ่งจะทำให้น้องๆรู้จักเลขชี้กำลังและฐานของเลขยกกำลัง และสามารถหาค่าของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวกได้ ก่อนอื่นเรามาทำความรู้จักกับเลขยกกำลังผ่านนิยามของเลขยกกำลัง ดังต่อไปนี้ บทนิยามของเลขยกกำลัง บทนิยาม  ถ้า a แทนจำนวนใด ๆ และ n แทนจำนวนเต็มบวก “a ยกกำลัง n” เขียนแทนด้วย aⁿ  มีความหมายดังนี้ a

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1