การบวกและการลบเอกนาม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การบวกและการลบเอกนาม

บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5

เอกนาม

เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก

ค่าคงตัว คือ ตัวเลข

ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y

เอกนาม ประกอบด้วย 2 ส่วนคือ

1) ส่วนที่เป็นค่าคงตัว เรียกว่า สัมประสิทธิ์ของเอกนาม                                                                                       

2) ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร โดยมีเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก  เรียกผลบวกของเลขชี้กำลังของตัวแปรทั้งหมดในเอกนามว่า ดีกรีของเอกนาม

ตัวอย่างที่ 1  จงบอกสัมประสิทธิ์และดีกรีของเอกนามต่อนี้

  1. 15x4             สัมประสิทธิ์คือ 15         ดีกรีของเอกนามคือ 4
  2. – 5                สัมประสิทธิ์คือ -5         ดีกรีของเอกนามคือ 0
  3. x3y2              สัมประสิทธิ์คือ  1          ดีกรีของเอกนามคือ 5
  4. – 6x3y4z       สัมประสิทธิ์คือ -6         ดีกรีของเอกนามคือ 8

จากตังอย่างที่ 1 น้องๆจะเห็นว่าสัมประสิทธ์ของเอกนามจะเป็นตัวเลขที่อยู่หน้าตัวแปรนั่นเองค่ะ ถ้าโจทย์ไม่เขียนตัวแปร แสดงว่า เลขชี้กำลังของตัวแปรเป็น 0 ทำให้ดีกรีของเอกนามคือ 0 เช่น -5 เขียนได้อีกแบบคือ – 5x0

ตัวอย่างที่ 2  จงพิจารณานิพจน์ต่อไปนี้ว่าเป็นเอกนามหรือไม่ เพราะเหตุใด

  1. – 8x-2 ไม่เป็นเอกนาม เพราะตัวแปร x มีเลขชี้กำลังเป็น -2  ซึ่งไม่ใช่ศูนย์หรือจำนวนเต็มบวก
  2. \frac{5a^{2}}{b} ไม่เป็นเอกนาม  เพราะเมื่อเขียน \frac{5a^{2}}{b} ในรูปการคูณจะได้ 5a2b-1 ทำให้ b มีเลขชี้กำลังเป็น  -1  ซึ่งไม่ใช่ศูนย์หรือจำนวนเต็มบวก
  3. 4x + 9 ไม่เป็นเอกนาม  เพราะไม่สามารถเขียนนิพจน์นี้ให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรได้

             เอกนามที่จะนำมาบวกหรือลบกันได้นั้นจะต้องเป็นเอกนามที่คล้ายกัน ฉะนั้นก่อนที่จะทำการบวกหรือลบเอกนามต้องตรวจสอบก่อนว่าเป็นเอกนามที่คล้ายกันหรือไม่

ตัวอย่างที่ 3  จงบอกว่าเอกนามที่กำหนดให้แต่ละคู่คล้ายกันหรือไม่

  1. x2y3 กับ – 5x2y3
  2. 3x2 กับ x2
  3. 6 กับ 12p
  4. xy กับ x2y
  5. 4abc0 กับ 9ab
  6. 6x3 กับ 6x

                               คล้ายกัน                                         ไม่คล้ายกัน

                               3x2 กับ x2                                         6x3 กับ 6x

                               x2y3 กับ – 5x2y3                               xy กับ x2y

                               4abc0 กับ 9ab                                 6 กับ 12p

เอกนามสองเอกนามจะคล้ายกัน ก็ต่อเมื่อ

  1. เอกนามทั้งสองมีตัวแปรชุดเดียวกัน
  2. เลขชี้กำลังของตัวแปรตัวเดียวกันในแต่ละเอกนามเท่ากัน

การบวกเอกนาม

เอกนาม 2 เอกนามจะบวกกันได้ ก็ต่อเมื่อ เอกนามทั้งสองนั้นคล้ายกัน การบวกเอกนามจะใช้สมบัติการแจกแจง  โดยนำสัมประสิทธิ์ของเอกนามมาบวกกัน และมีส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร  ดังนี้

ผลบวกของเอกนามที่คล้ายกัน                                                                                                                                                  = (ผลบวกของสัมประสิทธิ์) x (ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร)

ตัวอย่างที่ 4  จงหาผลบวกของเอกนามต่อไปนี้

  1. 7x + 6x
  2. – 6mn + 4mn – 6
  3. 7xy2 + 5x2y
  1. 7x + 6x

   วิธีทำ  7x + 6x = (7 + 6)(x)

       =13x

              ตอบ  13x

  1. – 6mn + 4mn – 6

             วิธีทำ – 6mn + 4mn = (- 6 + 4)(mn)

                                                 = – 2mn

               ตอบ – 2mn

  1. 7xy2 + 5x2y

             วิธีทำ 7xy2 + 5x2y = 7xy2+ 5x2y

             ตอบ 7xy2 + 5x2y

             สำหรับเอกนามที่ไม่คล้ายกันนั้น จะนำสัมประสิทธิ์มารวมกันไม่ได้ จึงเขียนให้อยู่ในรูปการบวกของเอกนามเช่นเดิม เหมือนในข้อ 3

การลบเอกนาม

การลบเอกนามว่าเอกนาม 2 เอกนามจะลบกันได้ ก็ต่อเมื่อ เอกนามทั้งสองนั้นคล้ายกัน  การลบเอกนามจะใช้สมบัติการแจกแจงโดยนำสัมประสิทธิ์ของเอกนามมาลบกันและมีส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร  ดังนี้

ผลลบของเอกนามที่คล้ายกัน

= (ผลลบของสัมประสิทธิ์) x (ส่วนที่อยู่ในรูปของตัวแปรหรือการคูณกันของตัวแปร)

ตัวอย่างที่ 5   จงหาผลลบของเอกนามต่อไปนี้

  1. 8x – 6x

วิธีทำ 8x – 6x = (8 – 6)(x)

   = 2x

ตอบ 2x

  1. 20ab2 – 15ab2

วิธีทำ 20ab2 – 15ab2 = (20-15)( ab2)

     = 5ab2

ตอบ 5ab2

  1. 8xy3 – 6xy2

วิธีทำ 8xy3 – 6xy2 = 8xy3 – 6xy2

ตอบ 8xy3 – 6xy2

           สำหรับเอกนามที่ไม่คล้ายกันนั้น  จะนำสัมประสิทธิ์มาลบกันไม่ได้ จึงเขียนให้อยู่ในรูปการลบของเอกนามเช่นเดิมเหมือนในข้อ 3

สรุป

สิ่งที่น้องๆควรรู้ คือเอกนามจะบวกหรือลบกันได้ ก็ต่อเมื่อ เป็นเอกนามที่คล้ายกัน

ผลลบของเอกนามที่คล้ายกัน = (ผลบวกของสัมประสิทธิ์) x (การคูณกันของตัวแปร)

ผลลบของเอกนามที่คล้ายกัน = (ผลลบของสัมประสิทธิ์) x (การคูณกันของตัวแปร)

ความรู้ในเรื่องการบวกลบเอกนามจะเป็นพื้นฐานในการแยกตัวประกอบของพหุนาม น้องๆสามารถดูคลิปวิดีโอในการแยกตัวประกอบพหุนามได้เลยค่ะ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Like & Dislike ในการพูดถึงความชอบ และการให้ข้อมูลเกี่ยวกับตนเอง

สวัสดีน้องๆ ป. 5 ทุกคนนะครับผม วันนี้เราจะมาลองฝึกใช้ประโยคที่เอาไว้บอกความชอบของเรากัน พร้อมกับการให้ข้อมูลเกี่ยวกับตัวเองเบื้องต้นครับ ถ้าพร้อมแล้วไปลุยกันเลย

สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

การเขียนประกาศ เขียนเชิงกิจธุระได้อย่างไรบ้าง?

การเขียนเชิงกิจธุระหมายถึงหน้าที่ที่พึงกระทำ การเขียนเชิงกิจธุระมีมากมายหลายแบบ บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ การเขียนประกาศ ซึ่งเป็นการเขียนเชิงกิจธุระรูปแบบหนึ่ง เราไปดูพร้อมกันเลยค่ะว่าการเขียนประเภทนี้จะมีวิธีการอย่างไรบ้าง   การเขียนเชิงกิจธุระ   การเขียนประกาศ   ประกาศ เป็นการสื่อสารที่ใช้เผยแพร่โดยกว้าง ให้บุคคลทุกระดับในหน่วยงานหรือบุคคลภายนอกได้อ่านและมีความเข้าใจที่ตรงกัน โดยอาศัยสื่อสาธารณะชนิดใดชนิดหนึ่งเป็นการแจ้งให้ทราบและปฏิบัติตาม อย่างเช่น หนังสือพิมพ์ วิทยุ โทรทัศน์ ป้ายประกาศต่าง ๆ การใช้ภาษาในการประกาศนั้นจะไม่ใช้ข้อความยาว ๆ

การเปรียบเทียบจำนวนเต็ม

การเปรียบเทียบจำนวนเต็ม

ทบทวนจำนวนเต็ม บทความนี้จะทำให้น้องๆ เข้าใจ การเปรียบเทียบจำนวนเต็ม ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย น้องๆรู้จัก จำนวนเต็ม กันแล้ว แต่หลายคนยังไม่สามาถเปรียบเทียบความมากน้อยของจำนวนเต็มเหล่านั้นได้ ซึ่งถ้าน้องๆ เคยเรียนเรื่องการเปรียบเทียบเศษส่วนและจำนวนคละมาแล้ว เรื่องนี้จะกลายเป็นเรื่องง่ายดาย ซึ่งได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ทบทวนเรื่องจำนวนเต็ม  เช่น                                                                                                     25 ,  9  , -5 , 5.5 ,

สมบัติของรูปสามเหลี่ยมมุมฉาก

สมบัติของรูปสามเหลี่ยมมุมฉาก

ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

วิธีเขียน คำขวัญ ให้ถูกใจคนอ่าน

น้อง ๆ หลายคนคงจะคุ้นเคยกับคำขวัญกันเป็นอย่างนี้ เพราะในวันสำคัญต่าง ๆ อย่างวันเด็ก นายกรัฐมนตรีของประเทศในแต่ละสมัยก็จะให้คำขวัญแก่เด็ก ๆ ทุกปี แต่ทราบหรือไม่คะว่า คำขวัญ นั้นคืออะไรกันแน่ มีจุดมุ่งหมาย ลักษณะ และวิธีการเขียนอย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องราวทั้งหมดนั้นของคำขวัญ ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำขวัญ คืออะไร   คำขวัญ คือ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1