ตัวคูณร่วมน้อย (ค.ร.น.)

ตัวคูณร่วมน้อย(ค.ร.น.) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น
ตัวคูณร่วมน้อย (ค.ร.น.)

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ตัวคูณร่วมน้อย (ค.ร.น.)

น้องๆ ทราบหรือไม่ว่า การหาตัวคูณร่วมน้อย (ค.ร.น.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น เป็นการหาตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น บทความนี้ได้รวบรวม ตัวอย่าง ค.ร.น. พร้อมทั้งแสดงวิธีทำอย่างละเอียด โดยมีวิธี การหา ค.ร.น. ทั้งหมด 3 วิธี ดังนี้

  1. การหา ค.ร.น. โดยการหาผลคูณร่วม
  2. การหา ค.ร.น. โดยการแยกตัวประกอบ
  3. การหา ค.ร.น. โดยการหาร (หารสั้น)

        ก่อนอื่นที่จะไปเรียนรู้วิธี การหา ค.ร.น. ทั้ง 3 แบบนั้น น้องๆมาทำความรู้จักกับตัวคูณร่วมน้อย(ค.ร.น.) กันก่อนนะคะ

        ตัวคูณร่วมน้อย(ค.ร.น.) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น

        ก่อนที่จะไปเรียนรู้วิธี การหา ค.ร.น. วิธีแรกนั้น น้องๆจำเป็นต้องศึกษาและแยกแยะความแตกต่างระหว่างการหาตัวประกอบและพหุคูณของจำนวนนับใดๆ 

         น้องๆ ลองท่องสูตรคูณแม่ 2 หน่อยค่ะ จะได้ ตัวเลขที่เรียงกันในรูปแบบด้านล่าง

                            2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , …

          สังเกตได้ว่าจำนวนซึ่งเป็นสูตรคูณของแม่  2  แต่ละจำนวนนั้น  คือ  พหุคูณของ  2  และเขียนว่า “ พหุคูณของ  2 ”  ดังนี้

                           2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , …              เป็นพหุคูณของ  2

              สังเกตพหุคูณของ  2  ว่าจำนวนใดที่สามารถหารทุกจำนวนได้ลงตัว  จะได้ว่า  2  เป็นจำนวนที่หารพหุคูณของ  2  ได้ลงตัวทุกจำนวน สรุปได้ว่า  พหูคูณของ  2  คือ  จำนวนที่มี  2  เป็นตัวประกอบ

              ในทำนองเดียวกัน ถ้าท่องสูตรคูณแม่  3  และ  4  สังเกตว่ามีลักษณะเดียวกันกับสูตรคูณของแม่  2  

                        3 , 6 , 9 , 12  , 15 , 18 , 21 , 24 , 27 , 30 , 33 , 36  …              เป็นพหุคูณของ  3  

                        4 , 8 , 12 , 16  , 20 , 24 , 28 , 32 , 36 , 40 , 44 , 48  …           เป็นพหุคูณของ  4

              เมื่อน้องๆรู้จักพหุคูณของจำนวนแต่ละจำนวนแล้ว ต่อไปมาทำความรู้จักพหุคูณร่วม และตัวประกอบของจำนวนนับใดๆ  โดยศึกษาจากโจทย์ต่อไปนี้

  1. ตัวประกอบของ 3 คือ 1 และ 3                                                                                           พหุคูณของ 3  คือ 3, 6, 9, 12, …
  1. ตัวประกอบของ 4 คือ 1, 2 และ 4                                                                                       พหุคูณของ 4 คือ 4, 8, 16, 20, …
  1. ตัวประกอบของ 5  คือ 1 และ 5                                                                                          พหุคูณของ  5  คือ 5, 10, 15, 20, …

          เมื่อศึกษาครบทั้ง 3 ข้อแล้ว สามารถสรุปความหมายของ ตัวตั้งร่วมหรือพหุคูณร่วมของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป ซึ่งหมายถึง จำนวนนับใด ๆ ที่หารด้วยจำนวนนับนั้นลงตัวทุกจำนวน

          พหุคูณร่วมของจำนวนนับที่มีค่าน้อยที่สุด เรียกว่า ตัวคูณร่วมที่น้อยที่สุด หรือ ค.ร.น. ต่อไปมาดูนิยามเกี่ยวกับ ค.ร.น. กันนะคะ

ลำดับถัดไปจะนำน้องๆ ไปศึกษาวิธี การหา ค.ร.น. ทั้ง 3 วิธี ถ้าพร้อมแล้วมาเริ่มวิธีแรกกันเลยนะคะ

วิธีที่ 1 การหา ค.ร.น. โดยการหาผลคูณร่วม

หลักการ

  1. หาตัวตั้งหรือพหุคูณของจำนวนนับที่ต้องการหา ค.ร.น.
  2. พิจารณาตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุด
  3. ค.ร.น. คือ ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุด

เมื่อศึกษาหลักการหา ค.ร.น. โดยการหาผลคูณร่วม เรียบร้อยแล้ว น้องๆมาศึกษาตัวอย่างได้เลยคะ

ตัวอย่างที่ 1 จงหา ค.ร.น. ของ 2 และ 3                                                               

วิธีทำ พหุคูณของ 2   คือ  2, 4, 6, 8, 10, 12, 14, 16, 18, …                                                           

พหุคูณของ 3   คือ  3, 6, 9, 12, 15, 18, 21, 24, …                                                               

เรียก 6, 12, 18, … เป็นพหุคูณร่วมของ 2 และ 3                                                                     

พหุคูณที่น้อยที่สุดของ 2 และ 3  เรียกว่า ตัวคูณร่วมที่น้อยที่สุด ซึ่งเขียนย่อๆ  ว่า  ค.ร.น.

ดังนั้น  ค.ร.น. ของ 2 และ 3  คือ 6

ตัวอย่างที่ 2   จงหา ค.ร.น. ของ 2, 3  และ 4

วิธีทำ พหุคูณของ 2 คือ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, …

พหุคูณของ 3 คือ 3,  6,  9,  12,  15,  18,  21, 24, 27, …

พหุคูณของ 4  คือ  4,  8,  12,  16, 20,  24, 28, …

เพราะฉะนั้น พหุคูณร่วมของ 2, 3 และ 4 คือ 12 และ 24

นั่นคือ 12 เป็นพหุคูณร่วมที่น้อยที่สุดของ  2, 3 และ 4

ดังนั้น ค.ร.น. ของ 2, 3  และ  4  คือ  12

การหา ค.ร.น. โดยใช้วิธีที่ 1 ง่ายมากเลยใช่มั้ยค่ะ ต่อไปน้องๆ มาศึกษาวิธี การหา ค.ร.น. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 2 การหา ค.ร.น. โดยการแยกตัวประกอบ

หลักการ

  1. แยกตัวประกอบทั้งหมดของจำนวนนับที่ต้องการหา ค.ร.น. 
  2. พิจารณาตัวประกอบเฉพาะที่เป็นตัวประกอบร่วมของจำนวนนับที่จะหา ค.ร.น.
  3. พิจารณาตัวประกอบเฉพาะเดี่ยว ๆ
  4. นำตัวประกอบเฉพาะที่ได้จากข้อ 2. ทั้งหมด และข้อ 3. ทั้งหมด มาคูณกัน
  5. ค.ร.น. คือ ผลคูณในข้อ 4.

ตัวอย่างที่ 3  จงหา ค.ร.น. ของ  24  และ 32

ตัวอย่างที่  4   จงหา ค.ร.น. ของ 6, 10  และ 12

หมายเหตุ : จำนวนนับที่นำมาหา ค.ร.น. ถ้ามี 3 จำนวน ให้นำตัวซ้ำกัน 3 ตัวมา 1 ตัว และซ้ำกัน 2 ตัวมา  1 ตัว มาคูณกัน และคูณกับตัวที่เหลือที่ไม่ได้ซ้ำ ดังตัวอย่างข้างต้น  

จะดีกว่ามั้ยคะ ถ้ามีวิธีการที่จะสามารถหา ค.ร.น. ได้รวดเร็วยิ่งขึ้น แต่ทั้งนี้ทั้งนั้นขึ้นอยู่กับความถนัดของแต่ละบุคคลนะคะ น้องๆ ลองศึกษาวิธีสุดท้ายได้โดยใช้วิธีที่ 1 ง่ายมากเลยใช่มั้ยค่ะ ต่อไปน้องๆ มาศึกษาวิธี การหา ค.ร.น. โดยการแยกตัวประกอบ ได้เลยคะ

วิธีที่ 3 การหา ค.ร.น. โดยการหาร (หารสั้น)   

หลักการ

  1. ในแต่ละขั้นตอนของการหาร จะต้องเลือกตัวหาร โดยเลือกจากจำนวนเฉพาะที่เป็นตัวประกอบร่วมอย่างน้อยสองจำนวน ซึ่งอาจมีหลายจำนวน ให้เลือกจำนวนใดไปหารก่อนก็ได้
  2. นำตัวหารที่ได้จากข้อ 1. มาหาร
  3. หารต่อไปเรื่อย ๆ จนกระทั่งไม่มีจำนวนเฉพาะที่เป็นตัวประกอบร่วมของสองจำนวนใด ๆ 
  4. ค.ร.น. คือ ผลคูณของจำนวนเฉพาะที่นำไปหารในแต่ละขั้นตอน และจำนวนที่เหลือจากการหารทั้งหมด

ตัวอย่างที่ 5 จงหา ค.ร.น. ของ 18, 24 และ 48

วิธีทำ        2) 18         24            48

3)  9        12         24

2) 3          4           8

2)  3          2           4

    3          1            2

ดังนั้น ค.ร.น. ของ 18, 24 และ 48 คือ 2 x 3 x 2 x 2 x 3 x 1 x 2 = 144

ตัวอย่างที่ 6 จงหา ค.ร.น. ของ 30, 18 และ 20                                 

วิธีทำ              2 )30    18     20    

5 )15      9     10

3 )  3     9      2

      1     3      2

ดังนั้น  ค.ร.น.  ของ   30, 18 และ 20  คือ  2 x 5 x 3 x 1 x 3 x 2 = 180

ตัวอย่างที่ 7 จงหา ค.ร.น. ของ 40, 48 และ 18

วิธีทำ          2 )40    48      18    

2 )20    24       9

3 )10    12       9

2 )10      4       3

     5      2       3

ดังนั้น  ค.ร.น.  ของ   40, 48 และ 18  คือ 2 x 2 x 3 x 2 x 5 x 2 x 3 = 720

ตัวอย่างเพิ่มเติม

ตัวอย่างที่ 8 จงหา ค.ร.น. ของ 13 และ 29

วิธีทำ  เนื่องจาก  13  เป็นจำนวนเฉพาะ  และ 13 หาร 29 ไม่ลงตัว

   จะได้ว่า  พหุคูณร่วมที่น้อยที่สุดของ  13 หาร 29 คือ 13 x 29 = 377

ดังนั้น ค.ร.น.  ของ  13  และ  29 คือ  377

ตัวอย่างที่ 9 จงหา ค.ร.น. ของ 53 และ 69

 วิธีทำ  เนื่องจาก  53  เป็นจำนวนเฉพาะ  และ 53 หาร 69 ไม่ลงตัว

   จะได้ว่า  พหุคูณร่วมที่น้อยที่สุดของ  53 หาร 69  คือ 53 x 69 = 3,657

ดังนั้น ค.ร.น.  ของ  53  และ  69 คือ  3,657

เมื่อน้องๆเรียนรู้เรื่อง ตัวคูณร่วมน้อย (ค.ร.น.) จาก ตัวอย่าง ค.ร.น. หลายๆตัวอย่าง จะเห็นได้ชัดว่า การหา ค.ร.น. ไม่ได้เป็นเรื่องยากอย่างที่คิด ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น. ซึ่งจะเป็นการฝึกน้องๆได้การวิเคราะห์โจทย์และเลือกใช้วิธีการแก้ปัญหาของโจทย์แต่ละข้อได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การหา ค.ร.น.

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา ตัวคูณร่วมน้อย (ค.ร.น.) ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค การหา ค.ร.น. รวมถึงการอธิบาย ตัวอย่าง ค.ร.น. และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Past Simple Tense เน้น Verb to be

การใช้ Past Simple Tense เน้น Verb to be เกริ่นนำ เกริ่นใจ เรื่องอดีตนั้นไม่ง่ายที่จะลืม โดยเฉพาะอย่างยิ่ง เรื่องราวชีวิตของใครคนหนึ่งที่เราเอาใจใส่ นั่นจึงเป็นเหตุผลว่าทำไมเราควรที่จะให้ความสำคัญกับการทำความเข้าใจเรื่องง่าย ๆ อย่าง Past simple tense ซึ่งเป็นโครงสร้างประโยคที่เราใช้ในการเล่าเรื่องราวในอดีตที่เคยเกิดขึ้นแล้วตั้งแต่เมื่อกี้ ไปจนถึงเรื่องของเมื่อวาน  ภาษาไทยของเราเองก็ใช้โครงสร้างประโยคนี้บ่อย ๆ โดยเฉพาะอย่างยิ่งตอนที่เราอยากจะเล่าเรื่องของเรา ของใครคนอื่นที่เราอยากจะเม้ามอยกับคนรอบข้างอ่ะ

การนำเสนอข้อมูลในรูปแบบกราฟเส้น

ในบทคาวมนี้จะนำเสนอเนื้อของบทเรียนเรื่องกราฟเส้น นักเรียนจะสามารถเข้าในหลักการอ่านและการวิเคราะห์ข้อมูลจากกราฟเส้น รวมไปถึงสามารถมองความสัมพันธ์ของข้อมูลในแกนแนวตั้งและแนวนอนของกราฟเส้นได้อย่างถูกต้อง

อิเหนา

อิเหนา จากนิทานปันหยีสู่วรรณคดีเลื่องชื่อของไทย

อิเหนา เป็นวรรณคดีที่ถูกเผยแพร่เข้ามาในไทยตั้งแต่สมัยกรุงศรีอยุธยา น้อง ๆ สงสัยไหมคะว่าจุดเริ่มต้นของนิทานของชาวชวานี้มีจุดเริ่มต้นในไทยอย่างไร เหตุใดถึงถูกประพันธ์ขึ้นเป็นบทละครให้ได้เล่นกันในราชสำนัก ถ้าน้อง ๆ พร้อมหาคำตอบแล้ว เราไปเรียนรู้ประวัติความเป็นมาและเรื่องย่อของอิเหนา ตอน ศึกกะหมังกุหนิงกันเลยค่ะ   ความเป็นมา   อิเหนามีความเป็นมาจากนิทานปันหยี หรือที่เรียกว่า อิเหนาปันหยีรัตปาตี ซึ่งเป็นนิทานที่เล่าแพร่หลายกันมากในชวา เชื่อกันว่าเป็นนิยายอิงประวัติศาสตร์ของชวา ในสมัยพุทธศตวรรษที่ 16 ปรุงแต่งมาจากพงศาวดารชวา อิทธิพลของเรื่องอิเหนาเข้ามาในประเทศไทยครั้งแรกในสมัยอยุธยา จากการที่เจ้าฟ้าหญิงกุณฑลและเจ้าฟ้าหญิงมงกุฎ

NokAcademy_ม6 Relative Clause

ทบทวนเรื่อง Relative clause + เทคนิค Error Identification

สวัสดีค่ะนักเรียนม. 6 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อมากขึ้น พร้อมข้อสอบ Error

เตรียมสอบเข้า ม.1 โรงเรียนสตรีวิทยา

เตรียมสอบเข้า ม.1 โรงเรียนสตรีวิทยากันเถอะ   สวัสดีค่ะ มาพบกับแอดมินและ Nock Academy กับบทความเตรียมสอบเข้าม.1 กันอีกแล้วแต่วันนี้เรามาในบทความการสอบเข้าของโรงเรียนสตรีวิทยา โรงเรียนหญิงล้วนที่มีชื่อเสียงโด่งดังมานานกว่า 118 ปี อีกทั้งยังเคยเป็นสถานศึกษาของสมเด็จย่าและเคยได้รับเสด็จสมเด็จพระราชินีนาถเอลิซาเบธที่ 2 กล่าวได้ว่าเป็นโรงเรียนที่มีความผูกพันธ์กับราชวงศ์ของไทยและเป็นสถานที่ที่เคยต้อนรับราชวงศ์ชั้นสูงมาแล้วอีกด้วย นับเป็นความภาคภูมิใจแก่ผู้ที่ได้เข้าศึกษาที่โรงเรียนแห่งนี้เป็นอย่างมาก ไม่เพียงแต่เรื่องของความเก่าแก่และยาวนานของโรงเรียนที่ทำให้โรงเรียนสตรีวิทยานั้นเป็นที่รู้จัก แต่ในด้านของวิชาการก็มีความเข้มข้นและการแข่งขันที่สูงด้วยเช่นเดียวกัน โรงเรียนสตรีวิทยาในปัจจุบันมีการเรียนการสอนตั้งแต่ระดับชั้นมัธยมศึกษาปีที่ 1 ไปจนถึงมัธยมศึกษาปีที่ 6 ถือได้ว่าเป็นโรงเรียนมัธยมขนาดใหญ่ มีอัตราการสอบเข้าศึกษาที่สูงมากในแต่ละปี

มัทนะพาธา

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา ที่มาและเรื่องย่อ

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา เป็นวรรณคดีที่ทรงคุณค่าทางวรรณศิลป์ได้รับการยกย่องว่าแต่งดีและมีความแปลกใหม่อีกเรื่องหนึ่ง น้อง ๆ หลายคนอาจจะเคยคุ้นหูกันมาบ้างตามสื่อต่าง ๆ เพราะวรรณคดีเรื่องนี้เป็นหนึ่งในเรื่องที่โด่งดังจึงมักถูกหยิบไปทำเป็นละครทางโทรทัศน์บ่อย ๆ แต่จะมีความเป็นมาอย่างไรนั้น วันนี้เราจะไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ประวัติความเป็นมาของบทละครพูดคำฉันท์เรื่อง มัทนะพาธา     มัทนะพาธาเป็นบทละครพูดคำฉันท์ พระราชนิพนธ์ในพระบาทสมเด็จเพราะมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ทรงมีพระราชกุศลเพื่อสร้าง ตำนานแห่งดอกกุหลาบ จึงทรงผูกเรื่องขึ้นมาใหม่หมด ทรงให้ความสำคัญเรื่องความถูกต้อง และความสมจริงในรายละเอียดของเรื่อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1