การแยกตัวประกอบ

การแยกตัวประกอบ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแยกตัวประกอบ

การแยกตัวประกอบ ของจำนวนนับใด หมายถึง การเขียนจำนวนนับนั้นในรูปการคูณของ ตัวประกอบเฉพาะ  ซึ่งในบทความนี้ได้นำเสนอวิธีการ รวมถึง โจทย์การแยกตัวประกอบ ไว้มากมาย น้องๆสามารถศึกษาเรียนรู้ได้ดวยตนเองโดยที่มีวิธีการแยกตัวประกอบ 2 วิธี ดังนี้

  1. การแยกตัวประกอบ  โดยการคูณ 
  2. การแยกตัวประกอบ  โดยการหาร (หารสั้น)

        ก่อนอื่นน้องๆมาทบทวน ความหมายของตัวประกอบและจำนวนเฉพาะ กันก่อนนะคะ

จำนวนเฉพาะ  คือ  จำนวนนับที่มากกว่า  1  และมีตัวประกอบเพียง  2  ตัว  คือ  1  และตัวมันเอง

ตัวประกอบ ของจำนวนนับใด  ๆ  คือ จำนวนนับที่หารจำนวนนับนั้นได้ลงตัว  

แล้วน้องๆ ทราบหรือไม่ว่า ตัวประกอบเฉพาะ  คืออะไร   ถ้ายังไม่ทราบ แล้วรู้หรือไม่ว่าตัวประกอบทั้งหมดของ  28 มีจำนวนใดบ้าง

ตัวประกอบทั้งหมดของ  28 คือ 1, 2, 4, 7, 14, 28  จะเห็นได้ชัดว่า จำนวนเฉพาะจากตัวประกอบทั้งหมดของ  28  คือ 2 และ 7  เราเรียก  2 และ 7 ว่า ตัวประกอบเฉพาะ

ต่อไปมาดูตัวอย่าง ตัวประกอบ และ ตัวประกอบเฉพาะ กันนะคะ

ตัวอย่างที่ 1 จงหาตัวประกอบและตัวประกอบเฉพาะของจำนวนต่อไปนี้

  1.     10
  2.    36

วิธีทำ     1. ตัวประกอบของ  10  คือ  1, 2, 5, 10

ตัวประกอบเฉพาะของ  10  คือ  2, 5

2. ตัวประกอบของ 36 คือ  1, 2, 3, 4, 6, 9, 12, 18, 36

ตัวประกอบเฉพาะของ 36 คือ  2, 3

จากตัวอย่างที่ผ่านมา สามารถสรุปความหมายของตัวประกอบเฉพาะ ได้ว่า ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะของจำนวนนับใด ๆ        

เมื่อทำความรู้จักกับ ตัวประกอบเฉพาะ แล้ว ต่อไปมาดูวิธีการแยกตัวประกอบทั้ง 2 วิธี กันนะคะ เริ่มที่วิธีแรกกันเลยค่ะ 

วิธีที่ 1 การแยกตัวประกอบ โดยการคูณ 

         วิธีการแยกตัวประกอบโดยการคูณ หรือการเขียนแผนภาพ  เริ่มโดยการแยกออกเป็นผลคูณทีละสองจำนวน  ในการแยกตัวประกอบ ของจำนวนนับที่มีตัวประกอบหลาย ๆ จำนวน  เราอาจหาตัวประกอบทีละสองตัวหลาย ๆ ขั้น จนขั้นสุดท้ายได้ตัวประกอบทุกตัวเป็นตัวประกอบเฉพาะ

ตัวอย่างที่ 2  จงแยกตัวประกอบของ  50  และ  72

วิธีทำ             50 = 2 x 25

= 2 x 5 x 5  

                            72 = 2 x 36

= 2 x 2 x 18

= 2 x 2 x 2 x 9

= 2 x 2 x 2 x 3 x 3   

ดังนั้น  50 = 2 x 5 x 5  และ 72 = 2 x 2 x 2 x 3 x 3 

นอกจากการแยกตัวประกอบโดยการคูณ ยังมีอีกวิธีที่หนึ่งทำคล้าย ๆ กันคือ การแยกตัวประกอบการเขียนแผนภาพ ดังตัวอย่าง ต่อไปนี้

ตัวอย่างที่ 3 จงแยกตัวประกอบของ   60 

การแยกตัวประกอบ 2 ดังนั้น  60 = 2 x 2 x 3 x 5 

ตัวอย่างที่ 4 จงแยกตัวประกอบของ   160   

การแยกตัวประกอบ 3

ดังนั้น  160 = 2 x 2 x 2 x 2 x 2 x 5 

วิธีการแยกตัวประกอบ โดยการเขียนแผนภาพ เป็นวิธีที่ทำได้ง่ายและรวดเร็ว แต่ถ้าตัวเลขเยอะๆ อาจจะทำให้น้องๆคิดตัวเลขในการแยกตัวประกอบได้ช้า ลำดับต่อไปจึงขอนำเสนอวิธี การแยกตัวประกอบ โดยการหารสั้น

วิธีที่ 2 การแยกตัวประกอบ โดยการหาร (หารสั้น)

         วิธีตั้งหาร โดยใช้จำนวนเฉพาะไปหารจำนวนนับที่เป็นตัวตั้งเรื่อย ๆ จนไม่สามารถหารได้ เมื่อนำตัวหารทุกตัวมาคูณกันจะมีค่าเท่ากับจำนวนนับที่กำหนดให้ ดังตัวอย่างต่อไปนี้

ตัวอย่างที่ 5 จงแยกตัวประกอบของ 36

วิธีทำ           

2 ) 36             

2 ) 18 

3 )  9

      3                               

ดังนั้น  36 = 2 x 2 x 3 x 3 

ตัวอย่างที่ 6 จงแยกตัวประกอบของ  462

วิธีทำ                         

2 ) 462              

3 ) 231 

7 )  77

       11                               

ดังนั้น  462 = 2 x 3 x 5 x 7 x 11 

ตัวอย่างที่ 7 จงแยกตัวประกอบของ  110

วิธีทำ                         

2 ) 110              

5 )  55 

       11                               

ดังนั้น  110 = 2 x 5 x 11 

ตัวอย่างที่ 8 จงแยกตัวประกอบของ  80

วิธีทำ                         

2 ) 80              

2 ) 40 

2 ) 20

2 ) 10

       5                               

ดังนั้น  80 = 2 x 2 x 2 x 2 x 5 

เปรียบเทียบการแยกตัวประกอบ โดยการคูณและการเขียนแผนภาพ

           ตัวอย่าง การแยกตัวประกอบ ต่อไปนี้ จะแสดงให้เห็นความแตกต่างอย่างชัดเจน ระหว่างการแยกตัวประกอบโดยการหาร และการแยกตัวประกอบโดยการเขียนแผนภาพ ซึ่งได้รวบรวม โจทย์การแยกตัวประกอบ ไว้หลากหลายโจทย์ เมื่อน้องๆเจอโจทย์การแยกตัวประกอบ จะทำให้น้องๆเลือกวิธีการและทำออกมาได้อย่างถูกต้อง

ตัวอย่างที่ 9 จงแยกตัวประกอบของ  234

การแยกตัวประกอบ 6

ตัวอย่างที่ 10 จงแยกตัวประกอบของ  268

การแยกตัวประกอบ 5

ตัวอย่างที่ 11 จงแยกตัวประกอบของ  290

การแยกตัวประกอบ 4

ตั้งแต่ตัวอย่างที่ 9 ถึง ตัวอย่างที่ 11 น้องๆสังเกตหรือไม่คะ ไม่ว่าจะใช้วิธีการใดในการแยกตัวประกอบ ผลสุดท้ายแล้ว ในการแยกตัวประกอบคำตอบจะได้เท่ากันเสมอ

เมื่อน้องได้เรียนรู้เรื่อง การแยกตัวประกอบ ทั้ง 2 วิธี คือ วิธีการคูณ และ การหาร จำนวนที่นำมาแยกตัวประกอบจะต้องเป็น ตัวประกอบเฉพาะ ซึ่งจาก โจทย์การแยกตัวประกอบ  หลายๆข้อ จะเห็นได้ชัดว่า สามารถหาคำตอบได้ง่ายและรวดเร็ว เรื่องต่อไปที่น้องๆต้องเรียนรู้คือการหา  ตัวหารร่วมมาก (ห.ร.ม.) ซึ่งจะเป็นการฝึกน้องๆได้มีวิธีการหา ห.ร.ม. แต่ละข้อได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การแยกตัวประกอบ

        คลิปวิดีโอนี้ได้รวบรวมวิธี การแยกตัวประกอบ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย โจทย์การแยกตัวประกอบ และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์ การบวก ลบ และคูณเมทริกซ์ เราจะนำสมาชิกของเมทริกซ์แต่ละเมทริกซ์มาบวก ลบ คูณกัน ซึ่งการดำเนินการเหล่านี้มีสมบัติและข้อยกเว้นต่างกันไป เช่น การบวกต้องเอาสมาชิกตำแหน่งเดียวกันมาบวกกัน เป็นต้น ต่อไปเราจะมาดูวิธีการบวก ลบ และคูณเมทริกซ์กันค่ะ การบวกเมทริกซ์ เมทริกซ์ที่จะนำมาบวกกันได้นั้น ต้องมีมิติเท่ากัน และการบวกจะนำสมาชิกตำแหน่งเดียวกันมาบวกกัน เช่น 1.)  2.)    การลบเมทริกซ์ การลบเมทริกซ์จะคล้ายๆกับการบวกเมทริกซ์เลย

NokAcademy_ม5 Relative Clause

การเรียนเรื่อง Relative Clause

สวัสดีค่ะนักเรียนม. 5 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อมากขึ้น พร้อมข้อสอบ Error

some any

การใช้ Some และ Any ตามด้วยคำนาม

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การใช้ some และ any กันแบบเข้าใจง่ายๆ ถ้าพร้อมแล้วลองไปดูกันเลยครับ

การบวกและการลบเอกนาม

การบวกและการลบเอกนาม บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5 เอกนาม เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก ค่าคงตัว คือ ตัวเลข ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y เอกนาม ประกอบด้วย 2

การเลื่อนขนาน

สำหรับการแปลงทางเรขาคณิตในบทนี้จะกล่าวถึงการแปลงที่จะได้ภาพที่มีรูปร่างเหมือนกันและขนาดเดียวกันกับรูปต้นแบบเสมอ โดยใช้การเลื่อนขนาน

Suggesting Profile

สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สวัสดีค่ะนักเรียนชั้นม. 4 ที่น่ารักทุกคน วันนี้ครูจะพาไปตะลุย “สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ พร้อมทั้งเทคนิคการพูดตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า สำนวนการเสนอ   ในชีวิตประจำวันของเรานั้น ล้วนจะต้องเจอกลุ่มประโยคคำถามในเชิงชักชวน และการเสนอแนะที่ใช้เป็นรูปแบบคำถามนั้นถือเป็นการเสนอแนะชักชวนทางอ้อม ถ้าเทียบกับนิสัยคนไทยแล้ว ก็เพื่อแสดงถึงความเกรงใจ ไม่พูดมาตรงๆ เพื่อจุดประสงคืบางอย่าง ซึ่งเป็นนิสัยที่คนไทยส่วนใหญ่มีอยู่แล้ว ในภาษาอังกฤษการใช้ภาษาเหล่านี้จะทำให้การสนทนาดูเป็นธรรมชาติและคล่องมากขึ้น โดยที่บางครั้งผู้ถามนั้นหว่านล้อมผู้ฟังด้วยการ ชวนให้ทำ หรือแนะนำให้ทำนั่นเอง ประโยคคำถามที่ใช้มีดังนี้  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1