โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

โจทย์ปัญหาเลขยกกำลัง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

         เราสามารถนำความรู้เกี่ยวกับเลขยกกำลังที่เรียนมาไม่ว่าจะเป็น การคูณ การหาร เลขยกกำลัง และการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก ไปประยุกต์ใช้ในการแก้ โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง รวมทั้งไปประยุกต์ใช้ในชีวิตประจำวันได้มากมาย  ในบทความนี้จะกล่าวถึงการนำความรู้เกี่ยวกับเลขยกกำลังไปใช้แก้โจทย์ปัญหาคณิตศาสตร์ ดังตัวอย่างต่อไปนี้

ตัวอย่างที่ 1 – 3

ตัวอย่างที่ 1  เด็กชายศิระนำแท่งลูกบาศก์ไม้ขนาด 5³ ลูกบาศก์เซนติเมตร  มาจัดวางในลูกบาศก์ใหญ่ที่มีความยาวของแต่ละด้านเป็น 125 เซนติเมตร  จงหาเลขยกกำลังที่แทนปริมาตรของลูกบาศก์ขนาดใหญ่นี้

วิธีทำ   ต้องการวางลูกบาศก์ให้มีความยาวแต่ละด้านเป็น  125 เซนติเมตร

           ใช้แท่งลูกบาศก์ไม้  ¹²⁵⁄₅  = 25  =  5² แท่ง

           ปริมาตรของลูกบาศก์ขนาดใหญ่   =  ปริมาตรของแท่งไม้ x จำนวนแท่งลูกบาศก์ไม้

        =  5³x (5² x 5² x 5²)

        =  5³⁺²⁺²⁺²

        =  5⁹  ลูกบาศก์เซนติเมตร 

ตอบ    ปริมาตรของลูกบาศก์ขนาดใหญ่นี้เท่ากับ   5⁹  ลูกบาศก์เซนติเมตร

ตัวอย่างที่ 2  โลกหนักประมาณ  5 x 10²⁴  กิโลกรัม  ดวงอาทิตย์หนักเป็น  4 x 10  เท่าของโลก จงหาน้ำหนักของดวงอาทิตย์

วิธีทำ  โลกหนักประมาณ  5 x 10²⁴  กิโลกรัม 

          ดวงอาทิตย์หนักเป็น  4 x 10  เท่าของโลก

          ดังนั้น  ดวงอาทิตย์หนักประมาณ  (5 x 10²⁴) x (4 x 10⁵)  กิโลกรัม

                                                       =  (5 x 4) x (10²⁴ x 10⁵)

                                                       =  20 x 10²⁴

                                                       =  20 x 10²⁹

                                                       =   2 x 10 x 10²⁹

                                                       =  2  x 10³⁰  กิโลกรัม

ตอบ   ดวงอาทิตย์หนักประมาณ  2  x 10³⁰  กิโลกรัม

ตัวอย่างที่ 3  ไม้กระดานแผ่นหนึ่งกว้าง  32 เซนติเมตร ยาว 64 เซนติเมตร  หนา 2 เซนติเมตร  จงหาว่าไม้กระดานแผ่นนี้มีปริมาตรกี่ลูกบาศก์เซนติเมตร (ตอบในรูปเลขยกกำลัง)

วิธีทำ    ปริมาตรของไม้กระดานแผ่นนี้   =  ความกว้าง x ความยาว x ความหนา

                                                         =  32 x 64 x 2   ลูกบาศก์เซนติเมตร

                                                         =  (2 x 2 x 2 x 2 x 2) x (2 x 2 x 2 x 2 x 2 x 2) x 2

                                                         =  2⁵ x 2⁶ x 2

                                                         =  2⁵¹

                                                         =  2¹²   ลูกบาศก์เซนติเมตร                      

ตอบ   ไม้กระดานแผ่นนี้มีปริมาตร  2¹²   ลูกบาศก์เซนติเมตร

ตัวอย่างที่ 4 – 6

ตัวอย่างที่ 4     ถ้าโลกของเรามีมวล  6 x 10²⁴  กิโลกรัม  แล้วมวลของดวงอาทิตย์จะมีค่าเท่าใด เมื่อมวลของดวงอาทิตย์เท่ากับ  330,000  เท่าของมวลโลก

 วิธีทำ   มวลของดวงอาทิตย์เท่ากับ  330,000 = 3.3 x 10⁵ เท่าของมวลโลก

            มวลของโลกเท่ากับ  6 x 10²⁴  กิโลกรัม

            ดังนั้น  มวลของดวงอาทิตย์เท่ากับ  3.3 x 10⁵ x 6 x 10²⁴  =  (3.3 x 6) x (10⁵x 10²⁴

=   19.8 x 10²⁹

=  1.98 x 10 x 10²⁹

=  1.98 x 10³⁰  กิโลกรัม

ตอบ  มวลของดวงอาทิตย์มีค่าเท่ากับ  1.98 x 10³⁰  กิโลกรัม

ตัวอย่างที่ 5  วัตถุชิ้นหนึ่งอยู่ห่างจากโลก 1.5 x 10⁹  ปีแสง  ถ้า 1 ปีแสงเท่ากับ  9.4 x 10¹²  กิโลเมตร  แล้ววัตถุนี้จะอยู่ห่างจากโลกกี่กิโลเมตร 

วิธีทำ  ระยะทาง   1  ปีแสงเท่ากับ  9.4 x 10¹²  กิโลเมตร

           ระยะทาง 1.5 x 10⁹  ปีแสง เท่ากับ   9.4 x 10¹² x 1.5 x 10⁹  =  (9.4 x 1.5 ) x (10¹²  x 10⁹)  

   =  14.1 x 10¹²⁺⁹   

   =  14.1 x 10²¹    

   =   1.41 x 10 x 10²¹ 

   =   1.41 x 10²²  กิโลเมตร                 

ตอบ   วัตถุนี้จะอยู่ห่างจากโลก  1.41 x 10²²  กิโลเมตร

ตัวอย่างที่ 6  โรงงานแห่งหนึ่งต้องการผลิตสินค้าจำนวน 2 x 10⁴ ชิ้น แต่ละชิ้นต้องใช้โลหะ 9.1 x 10⁻³ กิโลกรัม  จงหาว่าต้องใช้โลหะทั้งหมดกี่กิโลกรัม

วิธีทำ  ต้องใช้โลหะทั้งหมดเท่ากับ  2 x 10⁴ x 9.1 x 10⁻³ =  (2 x 9.1) (10⁴ x 10⁻³)     

    =  18.2 10    

    =  1.82 10 10   

    =  1.82 10²   กิโลกรัม     

ตอบ   ต้องใช้โลหะทั้งหมด  1.82 10²  กิโลกรัม

ตัวอย่างที่ 7 – 8

ตัวอย่างที่ 7  ประมาณกันว่าในปี ค.ศ. 2060 โลกจะมีประชากรมากกว่า 10,000,000,000  คน ถ้าพื้นโลกส่วนที่เป็นที่อยู่อาศัยได้มีพื้นที่ประมาณ 15 x 10⁷ ตารางกิโลเมตร จงหาความหนาแน่นของประชากรโลกโดยเฉลี่ยต่อพื้นที่ 1 ตารางกิโลเมตร  

วิธีทำ  ความหนาแน่นหาได้จาก ความหนาแน่น = ประชากร/พื้นที่โลก

           ปี ค.ศ. 2060 โลกจะมีประชากรมากกว่า  10,000,000,000  คน

           พื้นโลกส่วนที่เป็นที่อยู่อาศัยได้มีพื้นที่ประมาณ  15 x 10⁷ ตารางกิโลเมตร

           จะได้ว่า ความหนาแน่นของประชากรต่อพื้นที่โลกเท่ากับ  \frac{10,000,000,000 }{15\times 10^{7}}=\frac{1\times 10^{10}}{15\times 10^{7}}     

     =\frac{1}{15}\times \frac{10^{10}}{10^{7}}   

      =  0.066 x 10³

      =  6.6 x 10  คน/ตร.กม.

ตอบ ในปี ค.ศ. 2060 ความหนาแน่นของประชากรโลกโดยเฉลี่ยเท่ากับ  6.6 x 10  หรือ 66 คน/ตร.กม.

ตัวอย่างที่ 8  เชื้อไวรัสที่ทำให้เกิดโรคหวัดแต่ละตัวยาวประมาณ  5 x 10⁻⁷  เมตร ถ้าไวรัสชนิดนี้เรียงต่อกันเป็นสายยาว  6 x 10⁻³ เมตร จงหาว่ามีไวรัสอยู่ประมาณกี่ตัว

วิธีทำ  ไวรัสเรียงต่อกันเป็นสายยาวประมาณ  6 x 10⁻³ เมตร

  ถ้าไวรัสแต่ละตัวยาวประมาณ  5 x 10⁻⁷  เมตร

  จะมีไวรัสที่เรียงต่อกันอยู่ประมาณ  \frac{6\times 10^{-3}}{5\times 10^{-7}}  =  \frac{6\times 10^{7}}{5\times 10^{3}}  ตัว

     =  \frac{60\times 10^{6}}{5\times 10^{3}}

     =  12 x 10⁶⁻³

     =  12 x 10³   

     =  12,000  ตัว

ตอบ  มีไวรัสที่เรียงต่อกันอยู่ประมาณ 12,000 ตัว

สรุป

หลักในการแก้โจทย์ปัญหามีดังนี้

  1. ต้องรู้สิ่งที่โจทย์กำหนด
  2. ต้องรู้สิ่งที่โจทย์ถาม
  3. ดำเนินการเพื่อแก้โจทย์ปัญหา โดยใช้ความรู้เรื่องเลขยกกำลัง
คลิปวิดีโอ โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

        คลิปวิดีโอนี้ได้รวบรวมวิธี การแก้โจทย์ปัญหาเกี่นวกับเลขยกกำลัง  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมการเอกซ์โพเนนเชียล

สมการเอกซ์โพเนนเชียล

สมการเอกซ์โพเนนเชียล สมการเอกซ์โพเนนเชียล เป็นสมการที่จะมีเลขชี้กำลังเป็นตัวแปร เช่น ,   จากบทความที่ผ่านมาเราได้พูดถึงฟังก์ชันเอกซ์โพเนนเชียลไปแล้ว ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับการแก้สมการเอกซ์โพเนนเชียลซึ่งมีหลายวิธี  ซึ่งเรื่องสมการเอกซ์โพเนนเชียลนี้มักจะออกสอบบ่อยเรียกได้ว่าทุกปีเลย ดังนั้นวันนี้เราเลยยจะมาสอนน้องๆแก้สมการ และให้เทคนิคการแก้สมการเอกซ์โพเนนเชียล สำหรับใครที่ยังไม่ได้ทำความรู้จักกับฟังก์ชันเอกซ์โพเนนเชียลสามารถเข้าไปดูตามลิงค์นี้เลยค่ะ !!!ฟังก์ชันเอกซ์โพเนนเชียล!!! การแก้สมการเอกซ์โพเนนเชียล วิธีที่ 1 : ทำฐานให้เหมือนกัน เมื่อฐานเท่ากันแล้ว เราก็จะได้ว่าเลขชี้กำลังก็จะเท่ากันด้วย ตัวอย่าง    วิธีที่ 2 : ทำเลขชี้กำลังให้เหมือนกัน

M6 Phrasal Verbs

Phrasal Verbs 

สวัสดีค่ะนักเรียนชั้นม.6 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “Phrasal Verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด   ความหมาย Phrasal Verbs  Phrasal Verbs คือ คำกริยา โดยเป็นกริยาที่มีคำอื่นๆ อย่างเช่น คำบุพบท (Preposition) ร่วมกันส่วนใหญ่แล้ว Phrasal Verbs จะบอกถึงการกระทำ มักจะเจอในชีวิตประจำวันในสถานการณ์ทั่วไป ไม่เป็นทางการมาก ข้อดีคือจะทำให้ภาษาใกล้เคียงกับเจ้าของภาษามากขึ้นนั่นเองจ้า

เรขาคณิตสามมิติ

เรขาคณิตสามมิติ

ในบทความนี้เราจะได้เรียนรู้กับรูปเรขาคณิตสามมิติและส่วนประกอบต่างๆ เพื่อนำไปประยุกต์ใช้ในชีวิตประจำวันได้อย่างถูกต้อง

ที่มาของขุนช้างขุนแผน ตอน กำเนิดพลายงาม

​ขุนช้างขุนแผนเป็นวรรณกรรมที่เชื่อว่ามีเค้าเรื่องจริงในสมัยอยุธยา มีมากมายหลายตอน แต่ตอนที่ถูกนำมาให้เด็กได้เรียนกันมีด้วยกันสองตอนคือกำเนิดพลายงามและขุนช้างถวายฎีกา สำหรับตอนที่น้อง ๆ จะได้เรียนรู้กันในวันนี้คือตอน กำเนิดพลายงาม ซึ่งคือว่าเป็นตอนที่สำคัญอย่างมากเพราะเป็นเหมือนจุดเริ่มต้นของเรื่องราวทั้งหมดของเรื่อง ตอนนี้จะมีความเป็นมา เรื่องย่อ และมีความดีเด่นอย่างไรบ้าง ถ้าพร้อมแล้วเราไปดูพร้อมกันเลยค่ะ   ความเป็นมา   ขุนช้างขุนแผนเป็นวรรณคดีที่มีมาอย่างยาวนาน แต่ในสมัยรัชกาลที่ 2 พระบาทสมเด็จพระพุทธเลิศหล้านภาลัย โปรดเกล้าฯ ให้ชำระเสภาขุนช้างขุนแผน ได้ทรงประชุมกวีเอกสมัยนั้น ช่วยกันแต่งคนละตอนสองตอน สุนทรภู่ก็ได้รับมอบหมายให้ร่วมแต่งด้วย และท่านคงต้องแต่งอย่างสุดฝีมือทำให้ตอน

ารบวก-ลบ-คูณ-หารจำนวนเต็ม

การบวก ลบ คูณ หารจำนวนเต็ม

บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง การบวก ลบ คูณ หารจำนวนเต็ม มากยิ่งขึ้น ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลายและอธิบายไว้อย่างละเอียด โดยก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง จำนวนตรงข้าม และ ค่าสัมบูรณ์ เพื่อใช้ในการบวก ลบ จำนวนเต็ม ซึ่งมีวิธีการดังตัวอย่างต่อไปนี้ การบวกจำนวนเต็ม การบวกจำนวนเต็มบวก โดยใช้ค่าสัมบูรณ์ ให้น้องๆทบทวนการหาค่าสัมบูรณ์ ดังนี้ |-12|=   12 |4|=   4

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1