เรนจ์ของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย R_r

 

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย R_r คือสมาชิกตัวหลัง

เช่น r_1 = {(2, 2), (3, 5), (8, 10)}

จะได้ว่า R_{r_1} = {2, 5, 10}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)} จากเรนจ์ของความสัมพันธ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r

สรุปได้ว่า R_{r_2} = {2}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

พิจารณากราฟของสมการ y = \frac{1}{x}

เรนจ์ของความสัมพันธ์

จะเห็นว่ากราฟของ y = \frac{1}{x} ไม่ตัดแกน x นั่นคือ y ≠ 0

และจาก เรนจ์ของความสัมพันธ์คือ สมาชิกตัวหลังของคู่อันดับ ซึ่งก็คือ y นั่นเอง 

หรืออาจจะสังเกตจากสมการก็ได้ เนื่องจาก x เป็น 0 ไม่ได้ นั่นก็แปลว่ายังไง y ก็ไม่เป็น 0 แน่นอน

ดังนั้น R_{r_3} = {y : y  เป็นจำนวนจริง และ y ≠ 0}

 

ตัวอย่างการหาเรนจ์ของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น R_r = {2, 4, 6}

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า ค่า y มีค่าตั้งแต่ 0 ทำให้ได้ว่า y เป็นจำนวนจริงที่มากกว่าหรือเท่ากับ 0 

หรือจะสังเกตจากสมการเลยก็ได้ จาก y = x²  จากที่เรารู้อยู่แล้วว่า จำนวนจริงยกกำลังสองยังไงก็ไม่เป็นลบแน่นอน เราเลยรู้ว่า y ยังไงก็ต้องเป็นบวกหรือ 0 

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≥ 0}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า กราฟไม่ตัดแกน x เลย (จุดที่กราฟตัดแกน x คือจุดที่ y = 0) นั่นคือ y เป็นอะไรก็ได้แต่ไม่มีทางเป็น 0 

หรือจะสังเกตจากสมการ y = \frac{1}{x-3} จากที่รู้ว่า x นั้นเป็น 3 ไม่ได้ (เพราะจะทำให้ y หาค่าไม่ได้) แต่เมื่อแทน x เป็นจำนวนจริงอื่น ยังไง y ก็ไม่มีทางเป็น 0 เพราะตัวเศษเป็นค่าคงที่

ดังนั้น R_r = {y : y เป็นจำนวนจริง และ y ≠ 0}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จากเรนจ์คือสมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r นั่นก็คือ y นั่นเอง

และจากกราฟจะเห็นว่า y ไม่เป็นลบเลย นั่นคือ y มากกว่าหรือเท่ากับ 0

หรือจะสังเกตจากสมการก็ได้ จากสมการ y = \sqrt{x} จากที่เรารู้ว่าโดเมนหรือ x เป็นลบ ไม่ได้ นั่นคือ x มากกว่าหรือเท่ากับ 0 ทำให้ได้ว่า y ไม่มีทางเป็นลบเหมือนกัน

ดังนั้น R_r = {y : y ∈ R และ y ≥ 0}

 

วิดีโอ เรนจ์ของความสัมพันธ์

https://youtu.be/dHYXyKemluc

 

เนื้อหาที่ควรรู้และเกี่ยวข้องกับเรนจ์ของความสัมพันธ์

  1. กราฟของความสัมพันธ์
  2. โดเมนของความสัมพันธ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

พาราโบลา

พาราโบลา

พาราโบลา พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix) พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้ ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x

การโต้วาที

โต้วาที และยอวาที แต่งต่างกันอย่างไร?

การพูดมีมากมายหลายประเภท แล้วแต่จุดประสงค์ของผู้พูดว่าต้องการจะสื่อสารออกมาในรูปแบบใด แต่จะมีอยู่ประเภทหนึ่งที่มีหัวข้อให้พูดและต้องแบ่งออกเป็นสองฝ่าย โดยไม่ได้มีเจตนาเพื่อมาทะเลาะกัน เพราะเรากำลังหมายถึงการพูดโต้วาทีและการยอวาที ที่เป็นการพูดแสดงความคิดเห็นในลักษะที่ต่างกัน แต่จะต่างกันอย่างไรบ้างนั้น เราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   การโต้วาที     การโต้วาที เป็นการแสดงความคิดเห็นโต้แย้งด้วยเหตุผลเพื่อให้ชนะอีกฝ่าย โดยจะแบ่งผู้พูดออกเป็น 2 ฝ่าย คือ ฝ่ายญัตติและฝ่ายคัดค้านญัตติ และมีกรรมการคอยตัดสินว่าจะให้ฝ่ายใดชนะ โดยแต่ละฝ่ายจะต้องมีข้อมูลเพื่อมาสนับสนุนการพูดของตัวเอง หักล้างแนวคิดของอีกฝ่ายและต้องมีปฏิภาณไหวพริบ   องค์ประกอบของการโต้วาที  

การเรียงคำคุณศัพท์ (Adjective Order)

น้องๆ น่าจะรู้จักหรือเคยได้ยิน “คำคุณศัพท์” หรือ Adjective ในภาษาอังกฤษกันมาบ้างแล้วใช่มั้ยครับ? ซึ่งหน้าที่ของคำเหล่านี้คือเพิ่มความหมายและบอกลักษณะของคำนามนั่นเอง วันนี้เราจะมาเรียนรู้กันว่าหากมี Adjective มากกว่า 1 คำมาขยายคำนาม เราจะเรียงลำดับมันอย่างไรดี ไปดูกันเลย!

Passive voice + Active Voice

การใช้ Passive Voice และ Active Voice ในรูปปัจจุบัน 

สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปดูการใช้ Passive Voice และ Active Voice ในรูปปัจจุบัน กัน ถ้าพร้อมแล้วก็ไปลุยกันโลดเด้อ   ความแตกต่างของ Passive Voice VS Active Voice       Passive Voice คือประโยคที่เน้นกรรม เน้นว่าใครถูกทำ  Active

บวกเศษส่วนและจำนวนคละให้ถูกต้องตามหลักการ

การบวกคือพื้นฐานทางคณิตศาสตร์ที่ต้องเจอมาตั้งแต่ระดับอนุบาล แต่นั่นคือการบวกจำนวนเต็มโดยหลักการคือการนับรวมกัน แต่การบวกเศษส่วนและจำนวนคละนั้นเราไม่สามารถนับได้เพราะเศษส่วนไม่ใช่จำนวนนับ บทความนี้จึงจะพาน้อง ๆมาทำความเข้าใจกับหลักการบวกเศษส่วนและจำนวนคละ อ่านบทความนี้จบรับรองว่าน้อง ๆจะเข้าใจและสามารถบวกเศษส่วนจำนวนคละได้เหมือนกับที่เราสามารถหาคำตอบของ 1+1 ได้เลยทีเดียว

ลิลิตตะเลงพ่าย

ถอดความหมายตัวบทเด่นใน ลิลิตตะเลงพ่าย

ลิลิตตะเลงพ่าย เป็นวรรณคดีเรื่องดังที่มีตัวบทเด่น ๆ มากมาย สำหรับการถอดคำประพันธ์ในวันนี้เราได้คัดเลือกบทเด่น ๆ มาให้น้อง ๆ ได้เรียนกันถึง 13 บทเลยทีเดียว แต่เพราะเนื้อหาที่สนุก ภาษาที่สละสลวย รับรองว่าน้อง ๆ จะไม่มีทางเบื่อวรรณคดีเรื่องนี้แน่นอน ถ้าพร้อมแล้วเราไปเรียนความหมายของแต่ละบทพร้อมกันเลยนะคะ ตัวบทเด่น ๆ ใน ลิลิตตะเลงพ่าย   บทที่ 1  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1