สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ มุม-ด้าน-มุม
สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 1ด้าน และ มุม 2 มุม ในการพิสูจน์

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ในทางคณิตศาสตร์เมื่อสามารถเคลื่อนที่รูปเรขาคณิตรูปหนึ่งไปทับรูปเรขาคณิตอีกรูปหนึ่งได้สนิท จะกล่าวว่ารูปเรขาคณิตสองรูปนั้น เท่ากันทุกประการ

ถ้ารูปสามเหลี่ยมสองรูปใดๆ มีมุมที่มีขนาดเท่ากันสองคู่ และด้านซึ่งเป็นแขนร่วมของมุมทั้งสองมีขนาดยาวเท่ากันด้วยแล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ

เท่ากันทุกประการแบบมุม-ด้าน-มุม

 

มุม-ด้าน-มุม

ตัวอย่างที่ 1

จงพิสูจน์ว่า PX = PZ เมื่อ รูปสี่เหลี่ยม PXYZ เป็นสี่เหลี่ยมรูปว่าว และมีมุมที่เท่ากันดังรูป

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ความเท่ากันทุกประการของสามเหลี่ยม

ตัวอย่างที่ 2

กำหนดให้ มุมABO = มุมOCD และด้าน BO = OC ตามรูป จงพิสูจน์ว่า AB = CD

สามเหลี่ยมที่เท่ากันแบบมุม-ด้าน-มุม

เท่ากันทุกประการ

ตัวอย่างที่ 3

กำหนดให้ มุมQPS = มุมSPR และ มุมPSQ = มุมPSR = 90องศา อยากทราบว่า สามเหลี่ยมPQR เป็นรูปสามเหลี่ยมหน้าจั่วหรือไม่

สามเหลี่ยมหน้าจั่ว

ความเท่ากันทุกประการ

ตัวอย่างที่ 4

จากรูปกำหนดให้ มุมPOK = มุมRKO และ มุมOKP = มุมKOR จงพิสูจน์ว่าสามเหลี่ยมOPK และสามเหลี่ยมKROเป็นสามเหลี่ยมที่เท่ากันทุกประการ

สามเหลี่ยมที่เท่ากันทุกประการ

ความเท่ากันทุกประการแบบมุม-ด้าน-มุม

คลิปวิดีโอตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น เป็นกราฟที่นิยมใช้เเสดงความเปลี่ยนเเปลงของข้อมูลของข้อมูลที่ได้จากการเก็บรวบรวมข้อมูล โดยเรียงข้อมูลตามลำดับก่อนหลังของเวลาที่ข้อมูลนั้น ๆ เกิดขึ้น ทำให้เห็นเเนวโน้มของข้อมูลเเละช่วยให้เห็นการเปลี่ยนเเปลงของข้อมูลได้อย่างรวดเร็ว รวมไปถึงเเสดงถึงความสัมพันธ์ต่าง ๆ ของข้อมูล ซึ่งสามารถนำไปใช้ในการพยากรณ์เกี่ยวกับข้อมูลนั้น ๆ ได้ ตัวอย่างรูปเเบบของกราฟเส้นที่สามารถพบเห็นได้ทั่วไปในชีวิตประจำวัน ตัวอย่างการนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยกราฟเส้น  ตัวอย่างที่ 1 จงเขียนกราฟเเสดงจำนวนผลไม้ที่ถูกขายตามข้อมูลดังนี้ วิธีทำ เริ่มจากการสร้างเเกน x เเละเเกน y โดยให้เเกน x เป็น

auxiliary verbs

Auxiliary Verbs คืออะไร?

สวัสดีน้องๆ ม.5 ทุกคนนะครับ วันนี้เราจะมาทำความรู้จักกับสิ่งที่เรียกว่า Auxiliary Verbs ในภาษาอังกฤษกันครับ

โจทย์ปัญหาบวก ลบ ทศนิยม

บทความนี้จะยกตัวอย่างโจทย์ปัญหาการบวกลบทศนิยม เพื่อให้น้องๆได้ทำความเข้าใจและศึกษาการแสดงวิธีคิด หากต้องไปเจอการแก้โจทย์ปัญหาในห้องเรียนจะสามารถนำความรู้จากบทความนี้ไปใช้ให้เกิดประโยชน์อย่างสูงสุด

คำเชื่อม Conjunction

การใช้คำสันธาน (Conjunctions) เช่น and/ but/ or/ before/ after and etc.

สวัสดีค่ะนักเรียนชั้นม.2 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน (Conjunctions) เช่น and/ but/ or/ before/ after and etc.” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น and/

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1