สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ มุม-ด้าน-มุม
สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 1ด้าน และ มุม 2 มุม ในการพิสูจน์

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ในทางคณิตศาสตร์เมื่อสามารถเคลื่อนที่รูปเรขาคณิตรูปหนึ่งไปทับรูปเรขาคณิตอีกรูปหนึ่งได้สนิท จะกล่าวว่ารูปเรขาคณิตสองรูปนั้น เท่ากันทุกประการ

ถ้ารูปสามเหลี่ยมสองรูปใดๆ มีมุมที่มีขนาดเท่ากันสองคู่ และด้านซึ่งเป็นแขนร่วมของมุมทั้งสองมีขนาดยาวเท่ากันด้วยแล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ

เท่ากันทุกประการแบบมุม-ด้าน-มุม

 

มุม-ด้าน-มุม

ตัวอย่างที่ 1

จงพิสูจน์ว่า PX = PZ เมื่อ รูปสี่เหลี่ยม PXYZ เป็นสี่เหลี่ยมรูปว่าว และมีมุมที่เท่ากันดังรูป

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

ความเท่ากันทุกประการของสามเหลี่ยม

ตัวอย่างที่ 2

กำหนดให้ มุมABO = มุมOCD และด้าน BO = OC ตามรูป จงพิสูจน์ว่า AB = CD

สามเหลี่ยมที่เท่ากันแบบมุม-ด้าน-มุม

เท่ากันทุกประการ

ตัวอย่างที่ 3

กำหนดให้ มุมQPS = มุมSPR และ มุมPSQ = มุมPSR = 90องศา อยากทราบว่า สามเหลี่ยมPQR เป็นรูปสามเหลี่ยมหน้าจั่วหรือไม่

สามเหลี่ยมหน้าจั่ว

ความเท่ากันทุกประการ

ตัวอย่างที่ 4

จากรูปกำหนดให้ มุมPOK = มุมRKO และ มุมOKP = มุมKOR จงพิสูจน์ว่าสามเหลี่ยมOPK และสามเหลี่ยมKROเป็นสามเหลี่ยมที่เท่ากันทุกประการ

สามเหลี่ยมที่เท่ากันทุกประการ

ความเท่ากันทุกประการแบบมุม-ด้าน-มุม

คลิปวิดีโอตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สอบเข้าม.4 MWIT อยากสอบติดต้องเตรียมตัวอย่างไร

สอบเข้าม.4 มหิดลวิทยานุสรณ์ สวัสดีค่ะน้อง ๆ ทุกคน ใครที่กำลังหาข้อมูลเพื่อเตรียมตัวสอบเข้า ม.4 โรงเรียนมหิดลวิทยานุสรณ์กันอยู่บ้าง?  วันนี้พี่แอดมิน NockAcademy ได้ทำการสรุปขั้นตอนการสมัครและการเตรียมตัวสอบมาให้แล้ว! มีรายละเอียดอะไรบ้างไปดูกันเลย… โรงเรียนมหิดลวิทยานุสรณ์หรือที่เราเรียนสั้น ๆ ว่า MWIT เป็นโรงเรียนที่บริหารและจัดการการเรียนการสอนในด้านวิทยาศาสตร์และคณิตศาสตร์โดยมุ่งเน้นไปที่ความเป็นเลิศในวิชาดังกล่าว และค้นหานักเรียนที่มีศักยภาพทางวิทยาศาสตร์และคณิตศาสตร์สูงเพื่อพัฒนาศักยภาพได้อย่างเต็มประสิทธิภาพในการเรียนการสอน ซึ่งช่วงการรับสมัครจะอยู่ในช่วงเดือนสิงหาคมของทุกปี ผู้ที่ต้องการสมัครสอบต้องมีคุณสมบัติดังนี้ คุณสมบัติของผู้สมัครสอบคัดเลือกเข้า ม.4 1. เป็นผู้ที่มีความต้องการเข้าเรียนในโรงเรียนมหิดลวิทยานุสรณ์และต้องการเข้าศึกษาต่อในระดับอุดมศึกษาทางด้านคณิตศาสตร์ วิทยาศาสตร์และเทคโนโลยี

ม.1 หลักการใช้ Past Simple

หลักการใช้ Past Simple Tense

Hi guys! สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง หลักการใช้ Past Simple   ถ้าพร้อมแล้วก็ไปลุยกันโลด Past Simple Tense     หลักการใช้ง่ายๆ ใช้กับเหตุการณ์ หรือการกระทำที่เกิดขึ้นและจบลงในอดีต มักมีคำหรือกลุ่มคำของอดีตมากำกับ ตัวอย่างประโยคทั่วไปที่มักเจอบ่อยๆ   บอกเล่า I saw Jack yesterday.

Direct Object

Direct and Indirect Objects

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Direct และ Indirect Objects กันครับว่าคืออะไร ถ้าพร้อมแล้วไปดูกันเลย

NokAcademy_ ม.5 M6 Gerund

Gerund พร้อมแนวข้อสอบ ม.6

  สวัสดีค่ะนักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” กันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า

การใช้ตัวเชื่อม (Connective words): First,… Second,… Third,… Fourth,… Finally,…

 การใช้ตัวเชื่อม (Connective words) สวัสดีค่ะนักเรียน ม.2 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อม (connective words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay คือเรียงความเพราะฉะนั้นจะยาวกว่า Paragraph ที่เป็นเพียงย่อหน้าหนึ่งเท่านั้นนั่นเองค่ะ 

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ   ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1