สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-มุม-ด้าน

ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-มุม-ด้าน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

เมื่อเราต้องการจะพิสูจน์ถึงสิ่งของใดๆว่ามีความเท่ากันทุกประการ เราจำเป็นต้องมีหลักการที่นำมาใช้ได้จริง ดังเช่นในบทความนี้ที่กล่าวถึงรูปสามเหลี่ยมที่เท่ากันทุกประการโดยใช้ความยาวของด้าน 2ด้าน และ มุม 1มุม ในการพิสูจน์

ความเท่ากันทุกประการของรูปสามเหลี่ยม

บทนิยาม รูปสามเหลี่ยม ABC คือรูปที่ประกอบด้วยส่วนของเส้นตรงสามเส้น AB, BC และ AC เชื่อมต่อจุด A, B และ C ที่ไม่อยู่บนเส้นตรงเดียวกัน เรียกจุด A, B และ C ว่า “จุดยอดมุมรูปสามเหลี่ยม ABC”

สามเหลี่ยมที่เท่ากันทุกประการ

สามเหลี่ยมเท่ากันทุกประการ

  1. AB = DE, AC = DF และ BC = EF
  2. <A = <D, <B = <E และ <C = <F

ลักษณะดังนี้คือ ด้านที่ยาวเท่ากัน มุมที่มีขนาดเท่ากัน หรือจุดที่ทับกันได้ เรียกว่า “สมนัยกัน”

ดังนั้น จะได้ว่ารูปสามเหลี่ยมสองรูปเท่ากันทุกประการเมื่อด้านและมุมของรูปสามเหลี่ยมมีขนาดเท่ากันเป็นคู่ๆ

ในทางกลับกัน เมื่อรูปสามเหลี่ยม ABC และรูปสามเหลี่ยม DEF มีด้านคู่ที่สมนัยกันยาวเท่ากันคือ AB = DE,
BC = EF และ CA = FD และมุมที่สมนัยกันมีขนาดเท่ากันคือ <A = <D, <B = <E และ <C= <F ดังรูป

สามเหลียมที่เท่ากัน

สรุปได้ว่า รูปสามเหลี่ยมสองรูปเท่ากันทุกประการก็ต่อเมื่อด้านคู่ที่สมนัยกันและมุมคู่ที่สมนัยกันของรูปสามเหลี่ยมทั้งสองรูปนั้นมีขนาดเท่ากันเป็นคู่ ๆ

จากรูปจะได้ว่า   AB สมนัยกับ XY

AC สมนัยกับ XY

BC สมนัยกับ YZ

<A สมนัยกับ <X

<B สมนัยกับ <Y

<C สมนัยกับ <Z

จากรูปจะได้ว่า   MN = PQ

MO = PR

ON = QR

<M = <P

<O = <R

<N = <Q

รูปสามเหลี่ยมที่สัมพันธ์กันแบบด้าน-มุม-ด้าน

ในกรณีที่ต้องการทราบว่าสามเหลี่ยมสองรูปใดเท่ากันทุกประการโดยไม่จำเป็นต้องยกมาทับกัน เราสามารถใช้หลักการทางเรขาคณิตในการพิสูจน์ โดยอาศัยค้านกับมุมที่เท่ากันสามคู่ทั้งนี้ต้องขึ้นอยู่กับกรณีที่เป็นไปได้และถือเป็นสัจพจน์ ดังต่อไปนี้

ถ้ารูปสามเหลี่ยมสองรูปใด ๆ มีด้านยาวเท่ากันสองคู่และมุมในระหว่างด้านคู่ที่ยาวเท่ากันมีขนาดเท่ากันแล้ว ผลที่ตามมาคือ ด้านที่สมนัยที่เหลืออีก 1 คู่จะยาวเท่ากัน และมุมที่สมนัยกันที่เหลืออีก 2 คู่จะมีขนาดเท่ากันเป็นคู่ ๆ

สรุปได้ว่า

ถ้ารูปสามเหลี่ยมสองรูปมีความสัมพันธ์กันแบบด้าน-มุม-ด้าน (ด.ม.ด. ) กล่าวคือ มีด้านยาวเท่ากันสองคู่ และมุมในระหว่างด้านคู่ที่ยาวเท่ากันมีขนาดเท่ากัน แล้วรูปสามเหลี่ยมสองรูปนั้นเท่ากันทุกประการ

พิสูจน์   เนื่องจาก            1) ด้าน BO = ด้าน OC (กำหนดให้)

2) มุม AOB =มุม AOC (ต่างเท่ากับ 90องศา)
3) ด้าน AO = ด้าน OA (เป็นด้านร่วม)

ดังนั้น สามเหลี่ยมABO เท่ากันทุกประการกับสามเหลี่ยมACO  (ด.ม.ด.)

คลิปตัวอย่างเรื่องสามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-มุม-ด้าน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้คำคุณศัพท์และการเรียงคำคุณศัพท์

การใช้คำคุณศัพท์และการเรียงคำคุณศัพท์ คำคุณศัพท์ (Adjective) คืออะไร? ก่อนเราจะเริ่มเข้าเนื้อหา ทางผู้เขียนก็อยากจะพูดถึงความหมายและความสำคัญของคำคุณศัพท์ (Adjective) กันก่อน คำคุณศัพท์ (Adjectives) มักจะุถูกใช้ในการอธิบายลักษณะรูปร่างทางกายภาพของทั้งสิ่งของและสิ่งมีชีวิตที่รวมถึงตัวของมนุษย์เอง โดยที่เราจะมาเรียนกันวันนี้คือการที่บางครั้ง คำคุณศัพท์ (Adjective) นั้นจะมีลักษณะที่ถูกใช้อธิบายลักษณะทางกายภาพที่มากกว่าหนึ่งอย่าง ในภาษาไทยของเรา ก็มีการเรียกคำคุณศัพท์ หรือที่เรียกว่า order of adjective ด้วยเหมือนกัน จากศึกษาและพูดคุยกับนักศึกษาศาสตร์ พบว่า การใช้ภาษาไทยในปัจจุบันไม่ได้มีการกำหนดการเรียงลำดับคำคุณศัพท์แบบภาษาอังกฤษที่ชัดเจน

การบวกและการลบเอกนาม

การบวกและการลบเอกนาม บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5 เอกนาม เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก ค่าคงตัว คือ ตัวเลข ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y เอกนาม ประกอบด้วย 2

ผู้รู้ดีเป็นผู้เจริญ

ผู้รู้ดีเป็นผู้เจริญ เรียนรู้บทร้อยกรองจากพุทธศาสนสุภาษิต

สุภาษิต หมายถึงถ้อยคำที่กล่าวสืบต่อกันมาช้านาน และมีความหมายเป็นคติสอนใจ บางสุภาษิตพูดนำมาแต่งเป็นบทร้อยกรองเพื่อใช้เป็นบทอาขยานให้กับเด็ก ๆ ได้เรียน ได้ฝึกอ่าน รวมไปถึงให้เรียนรู้ข้อคิดจากสุภาษิตได้ง่ายมากขึ้น บทที่เราจะได้เรียนกันในวันนี้คือ ผู้รู้ดีเป็นผู้เจริญ จะเป็นอย่างไรบ้างนั้น ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมา ผู้รู้ดีเป็นผู้เจริญ     ผู้รู้ดีเป็นผู้เจริญเป็นบทร้อยกรองที่ถูกประพันธ์ขึ้นโดยพระยาอุปกิตศิลปสาร แต่งด้วยโคลงสี่สุภาพ 1 บท และกาพย์ยานี 11

การหมุน

การแปลงทางเรขาคณิตโดยการหมุน ( Rotation ) เป็นการแปลงที่จุดทุกจุดของรูปต้นแบบเคลื่อนที่ไปเป็นมุมเดียวกันรอบจุดตรึงอยู่กับที่ ที่กำหนดหรือจุดหมุน การหมุนจะหมุนทวนเข็มนาฬิกาหรือตามเข็มนาฬิกา

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย เมื่อ เป็นฟังก์ชัน จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1