สัญลักษณ์พื้นฐานเกี่ยวกับเซต

สัญลักษณ์ของเซตจะช่วยให้เราไม่ต้องเขียนประโยคยาวซ้ำๆ และใช้ได้เกือบทุกบทของวิชาคณิตศาสตร์ ช่วยให้ประหยัดเวลาและเนื้อที่บนกระดาษมากๆ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 

ความสำคัญของสัญลักษณ์พื้นฐานเกี่ยวกับเซต

เราจะใช้สัญลักษณ์เกี่ยวกับเซตแทนข้อความหลายๆข้อความ เพื่อความเข้าใจง่าย ทำให้ข้อความดูสั้นลง ในเนื้อหาคณิตศาสตร์ส่วนใหญ่จะใช้สัญลักษณ์เกี่ยวกับเซตค่อนข้างเยอะ เราจึงจำเป็นที่จะต้องรู้จักสัญลักษณ์ต่างๆเพื่อที่จะทำความเข้าใจเนื้อหาต่างๆได้ง่ายขึ้น

สัญลักษณ์พื้นฐานเกี่ยวกับเซต

 

1.) ∈,∉

 แทน เป็นสมาชิกของเซต

แทน ไม่เป็นสมาชิกของเซต

เช่น a เป็นสมาชิกของเซต A จะเขียนแทนด้วย a ∈ A

a ไม่เป็นสมาชิกของเซต A จะเขียนแทนด้วย a ∉ A

2.) =, ≠

= แทน การเท่ากัน

≠ แทนการไม่เท่ากัน

การที่เซตแต่ละเซตจะเท่ากันนั้น สมาชิกทุกตัวในเซตแต่ละเซตต้องเหมือนกัน

เช่น ให้ A = {a,b,c} , B = {c,a,b} และ C = {a,c,f}

จะเห็นกว่า A  และ B มีสมาชิกเหมือนกันทุกตัว

ดังนั้น เซต A เท่ากับ เซต B เขียนแทนด้วยสัญลักษณ์ A = B

แต่ สมาชิกในเซตC มีสมาชิกบางตัวที่ไม่เหมือนกับเซตA และ B

ดังนั้น A ≠ C และ B ≠ C

3.) Ø หรือ { } แทน การเป็นเซตว่าง

เซตว่าง คือ เซตที่ไม่มีสมาชิก

เช่น  A = {x | x เป็นจำนวนนับ และ x<0 }

จากที่เรารู้กันอยู่แล้วว่าจำนวนนับคือ ตัวเลขตั้งแต่ 1,2,3… จะเห็นว่าไม่มีจำนวนนับที่น้อยกว่า 0 ดังนั้น A จึงไม่มีสมาชิก จะได้ว่า A = Ø หรือ จะเขียนว่า A = { } ก็ได้

4.) ⊂ แทน เป็นสับเซตของเซต

เช่น ให้ A = {a,b} B = {a,b,c,d}

จะเห็นกว่า สมาชิกทุกตัวใน A เป็นสมาชิกใน B ด้วย

ดังนั้น A เป็นสับเซตของ B เขียนแทนด้วย A ⊂ B

5.) เรียกว่า ยูเนียน คือ การรวมสมาชิกของเซตหลายเซตมารวมกัน

6.) ∩ เรียกว่า อินเตอร์เซกชัน

ดูเนื้อหาเรื่องสับเซต

ดูเนื้อหาเรื่องการยูเนียนและการอินเตอร์เซคชัน

สัญลักษณ์อื่นๆที่อาจจะเกี่ยวข้อง

สัญลักษณ์ที่เราควรรู้ไว้ เพราะเราจะต้องเจอสัญลักษณ์เหล่านี้ในการเรียนคณิตศาสตร์

R แทน เซตของจำนวนจริง

 แทน จำนวนเต็มศูนย์

I¯แทน เซตของจำนวนเต็มลบ

แทน เซตของจำนวนนับ

 

ตัวอย่าง

 

1.) ให้ A = { x| x เป็นจำนวนนับ และ 1<x<4} และ B = {2,3}

จากโจทย์ จะได้ว่า 2 ∈ A และ 3 ∈ A เพราะ เงื่อนไขบอกว่า x ต้องเป็นจำนวนนับที่มากกว่า 1 และ น้อยกว่า 4 ดังนั้น ค่า x ที่เป็นไปได้คือ 2 และ 3 เท่านั้น

และจากที่เรารู้ว่า สมาชิกของ A ประกอบด้วย 2 และ 3 เราจะสังเกตเห็นว่า สมาชิกทุกตัวของ A เหมือนกับสมาชิกทั้งหมดใน B ดังนั้น เราสามารถสรุปได้ว่า A = B

2.) ให้ C {x,x,x,y} และ D = {x,y}

จากโจทย์ เราจะได้ว่า

 1. x ∈ C , x ∈ D , y ∈ C และ y ∈ D

2. C = D เพราะจะเห็นว่า {x,x,x,y} มีสมาชิกซ้ำกัน  โดยปกติแล้ว ถ้ามีสมาชิกในเซตซ้ำกันเราจะนิยมเขียนเพียงตัวเดียว ดังนั้น {x,x,x,y} สามารถเขียนได้อีกแบบ คือ {x,y}

3.) กำหนดให้ A  = {5,6,7}

B = { x | x เป็นจำนวนเต็มที่สอดคล้องกับสมการ (x-5)(x-6)(x-7) = 0}

C = { x | x เป็นจำนวนเต็ม และ 4< x < 8}
D = { x | x เป็นจำนวนเต็มคี่ที่น้อยกว่า 9 }

พิจารณาข้อความว่าสมาชิกแต่ละเซตมีอะไรบ้าง เซตใดเท่ากันและเซตไหนไม่เท่ากัน

วิธีทำ หาสมาชิกของเซต  B, C และ D

พิจารณา B  ; x เป็นจำนวนเต็มที่สอดคล้องกับสมาการ                    (x-5)(x-6)(x-7) = 0 จะได้ว่า x = 5,6,7

ดังนั้น 5 ∈ B , 6 ∈ B และ 7 ∈ B เขียนเซต B แบบแจกแจงสมาชิกจะได้         B = {5,6,7}

พิจารณา C ; x เป็นจำนวนเต็มที่มากกว่า 4 และน้อยกว่า 8 ดังนั้น       x = 5,6,7

จะได้ว่า 5,6,7 ∈ C เขียนเซต C แบบแจกแจงสมาชิกจะได้ C = {5,6,7}

พิจารณา D ; x เป็นจำนวนเต็มคี่ที่น้อยกว่า 9 ดังนั้น D = {…,-3,-1,1,3,5,7}

จาก B = {5,6,7}, C = {5,6,7} และ D = {…,-3,-1,1,3,5,7}

ดังนั้น A=B=C แต่ A ≠ D , B ≠ D และ C ≠ D

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ลำดับเลขคณิต

ลำดับเลขคณิต

ลำดับเลขคณิต ลำดับเลขคณิต คือลำดับที่มีค่าเพิ่มขึ้นหรือลดลงอย่างคงที่ โดยจำนวนที่เพิ่มขึ้นหรือลดลงนี้เราเรียกว่าผลต่างร่วม แทนด้วยสัญลักษณ์ d  โดยที่ d = พจน์ขวา – พจน์ซ้าย การเขียนลำดับเราจะเขียนแทนด้วย    โดยที่ คือพจน์ทั่วไปหรือเรียกอีกอย่างว่า พจน์สุดท้ายนั่นเอง   การหาพจน์ทั่วไปของลำดับเลขคณิต พจน์ที่1 n = 1     

ความเป็นมาของบทละครเรื่องรามเกียรติ์ ตอน นารายณ์ปราบนนทก

บทละครเรื่องรามเกียรติ์ เป็นวรรณคดีที่สำคัญและมีอิทธิพลต่อความคิดความเชื่อของคนไทยมาอย่างยาวนาน น้อง ๆ หลายคนก็คงจะรู้จักและเคยเห็นผ่านตากันมาบ้างตามสื่อต่าง ๆ แต่ทราบไหมคะว่าวรรณคดีเรื่องนี้มีที่มาอย่างไร และทำไมถึงมาเป็นบทละคร มีความสำคัญอย่างไรจึงมาอยู่ในบทเรียนวิชาภาษาไทย เราไปดูพร้อม ๆ กันเลยค่ะ   ความเป็นมาของบทละครเรื่องรามเกียรติ์     รามเกียรติ์ เป็นวรรณคดีที่ได้รับอิทธิพลและมีเค้าโครงเรื่องมาจากมหากาพย์รามายณะที่ฤๅษีวาลมีกิ ชาวอินเดียเป็นคนแต่งขึ้นเป็นภาษาสันสกฤต แม้จะไม่ปรากฏปีที่วรรณคดีเรื่องดังกล่าวเข้ามาเผยแผ่ในไทยอย่างแน่ชัด แต่ด้วยจากหลักฐานทางประวัติศาสตร์ก็ทำให้นักวิชาการคาดการณ์ว่าเป็นช่วงสมัยอยุธยา และในสมัยกรุงธนบุรี พระเจ้าตากสินได้ทรงประพันธ์เพื่อให้ละครหลวงเล่น ก่อนที่ต่อมาสมเด็จพระพุทธยอดฟ้าจุฬาโลก รัชกาลที่

การออกเสียงพยัญชนะไทย-01

เสียงพยัญชนะไทย ออกเสียงอย่างไรให้ถูกต้อง

  เชื่อว่าน้อง ๆ หลายคงเคยสงสัยเรื่องการออกเสียงพยัญชนะไทยกันไม่มากก็น้อย เพราะพยัญชนะในภาษาไทยของเรานั้นมีด้วยกัน 44 ตัว แต่กลับมีหน่วยเสียงเพียงครึ่งเดียวเท่านั้น ทำไมการออกเสียงพยัญชนะไทยถึงไม่สามารถออกเสียงตามรูปอักษรทั้ง 44 รูปได้? ไหนจะพยัญชนะท้ายที่เขียนอีกอย่างแต่ดันออกเสียงไปอีกอย่าง บทเรียนในวันนี้จะช่วยไขข้อข้องใจให้กับน้อง ๆ หรือคนที่กำลังสับสนเรื่องการออกเสียงพยัญชนะไทย ให้กระจ่างและสามารถออกเสียงได้อย่างถูกต้อง ดังนั้น เราไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ     เสียงพยัญชนะไทย เสียงพยัญชนะ คือ

กาพย์พระไชยสุริยา ศึกษาตัวบทที่น่าสนใจและคุณค่าที่อยู่ในเรื่อง

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นวรรณคดีที่ทรงคุณค่า เป็นแบบเรียนภาษาไทยที่มีมาแต่โบราณ นอกจากนี้ยังสอนเรื่องราวต่าง ๆ อีกมากมาก หลังจากที่ได้เรียนรู้เกี่ยวกับประวัติความเป็นมา ลักษณะคำประพันธ์และเนื้อเรื่องกันไปแล้ว เรื่องต่อไปที่น้อง ๆ จะได้เรียนรู้ก็คือตัวบทเด่น ๆ ที่น่าสนใจในเรื่องกาพย์พระไชยสุริยาค่ะ เรามาดูกันดีกว่านะคะว่าในกาพย์พระไชยสุริยาจะมีตัวบทไหนเด่น ๆ และมีคุณค่าอย่างไรบ้าง   ตัวบทที่น่าสนใจในกาพย์พระไชยสุริยา   ลักษณะคำประพันธ์ : กาพย์สุรางคนางค์ 28  

ลบไม่ได้ช่วยให้ลืม เช่นเดียวกับการลบเศษส่วนและจำนวนคละ!

บทความที่แล้วเราได้กล่าวถึงการบวกเศษส่วนและจำนวนคละไปแล้ว บทต่อมาก็จะเป็นเรื่องของการลบเศษส่วนและจำนวนคละ ทั้งสองเรื่องนี้มีหลักการคล้ายกันต่างกันที่เครื่องหมายที่บ่งบอกว่าโจทย์ต้องการทราบอะไร ดังนั้นบทความนี้จะอธิบายถึงหลักการลบเศษส่วนและจำนวนคละอย่างละเอียดและยกตัวอย่างให้น้อง ๆเข้าใจอย่างเห็นภาพและสามารถนำไปปรับใช้กับแบบฝึกหัดเรื่องการลบเศษส่วนและจำนวนคละได้

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1