สัญลักษณ์พื้นฐานเกี่ยวกับเซต

สัญลักษณ์ของเซตจะช่วยให้เราไม่ต้องเขียนประโยคยาวซ้ำๆ และใช้ได้เกือบทุกบทของวิชาคณิตศาสตร์ ช่วยให้ประหยัดเวลาและเนื้อที่บนกระดาษมากๆ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 

ความสำคัญของสัญลักษณ์พื้นฐานเกี่ยวกับเซต

เราจะใช้สัญลักษณ์เกี่ยวกับเซตแทนข้อความหลายๆข้อความ เพื่อความเข้าใจง่าย ทำให้ข้อความดูสั้นลง ในเนื้อหาคณิตศาสตร์ส่วนใหญ่จะใช้สัญลักษณ์เกี่ยวกับเซตค่อนข้างเยอะ เราจึงจำเป็นที่จะต้องรู้จักสัญลักษณ์ต่างๆเพื่อที่จะทำความเข้าใจเนื้อหาต่างๆได้ง่ายขึ้น

สัญลักษณ์พื้นฐานเกี่ยวกับเซต

 

1.) ∈,∉

 แทน เป็นสมาชิกของเซต

แทน ไม่เป็นสมาชิกของเซต

เช่น a เป็นสมาชิกของเซต A จะเขียนแทนด้วย a ∈ A

a ไม่เป็นสมาชิกของเซต A จะเขียนแทนด้วย a ∉ A

2.) =, ≠

= แทน การเท่ากัน

≠ แทนการไม่เท่ากัน

การที่เซตแต่ละเซตจะเท่ากันนั้น สมาชิกทุกตัวในเซตแต่ละเซตต้องเหมือนกัน

เช่น ให้ A = {a,b,c} , B = {c,a,b} และ C = {a,c,f}

จะเห็นกว่า A  และ B มีสมาชิกเหมือนกันทุกตัว

ดังนั้น เซต A เท่ากับ เซต B เขียนแทนด้วยสัญลักษณ์ A = B

แต่ สมาชิกในเซตC มีสมาชิกบางตัวที่ไม่เหมือนกับเซตA และ B

ดังนั้น A ≠ C และ B ≠ C

3.) Ø หรือ { } แทน การเป็นเซตว่าง

เซตว่าง คือ เซตที่ไม่มีสมาชิก

เช่น  A = {x | x เป็นจำนวนนับ และ x<0 }

จากที่เรารู้กันอยู่แล้วว่าจำนวนนับคือ ตัวเลขตั้งแต่ 1,2,3… จะเห็นว่าไม่มีจำนวนนับที่น้อยกว่า 0 ดังนั้น A จึงไม่มีสมาชิก จะได้ว่า A = Ø หรือ จะเขียนว่า A = { } ก็ได้

4.) ⊂ แทน เป็นสับเซตของเซต

เช่น ให้ A = {a,b} B = {a,b,c,d}

จะเห็นกว่า สมาชิกทุกตัวใน A เป็นสมาชิกใน B ด้วย

ดังนั้น A เป็นสับเซตของ B เขียนแทนด้วย A ⊂ B

5.) เรียกว่า ยูเนียน คือ การรวมสมาชิกของเซตหลายเซตมารวมกัน

6.) ∩ เรียกว่า อินเตอร์เซกชัน

ดูเนื้อหาเรื่องสับเซต

ดูเนื้อหาเรื่องการยูเนียนและการอินเตอร์เซคชัน

สัญลักษณ์อื่นๆที่อาจจะเกี่ยวข้อง

สัญลักษณ์ที่เราควรรู้ไว้ เพราะเราจะต้องเจอสัญลักษณ์เหล่านี้ในการเรียนคณิตศาสตร์

R แทน เซตของจำนวนจริง

 แทน จำนวนเต็มศูนย์

I¯แทน เซตของจำนวนเต็มลบ

แทน เซตของจำนวนนับ

 

ตัวอย่าง

 

1.) ให้ A = { x| x เป็นจำนวนนับ และ 1<x<4} และ B = {2,3}

จากโจทย์ จะได้ว่า 2 ∈ A และ 3 ∈ A เพราะ เงื่อนไขบอกว่า x ต้องเป็นจำนวนนับที่มากกว่า 1 และ น้อยกว่า 4 ดังนั้น ค่า x ที่เป็นไปได้คือ 2 และ 3 เท่านั้น

และจากที่เรารู้ว่า สมาชิกของ A ประกอบด้วย 2 และ 3 เราจะสังเกตเห็นว่า สมาชิกทุกตัวของ A เหมือนกับสมาชิกทั้งหมดใน B ดังนั้น เราสามารถสรุปได้ว่า A = B

2.) ให้ C {x,x,x,y} และ D = {x,y}

จากโจทย์ เราจะได้ว่า

 1. x ∈ C , x ∈ D , y ∈ C และ y ∈ D

2. C = D เพราะจะเห็นว่า {x,x,x,y} มีสมาชิกซ้ำกัน  โดยปกติแล้ว ถ้ามีสมาชิกในเซตซ้ำกันเราจะนิยมเขียนเพียงตัวเดียว ดังนั้น {x,x,x,y} สามารถเขียนได้อีกแบบ คือ {x,y}

3.) กำหนดให้ A  = {5,6,7}

B = { x | x เป็นจำนวนเต็มที่สอดคล้องกับสมการ (x-5)(x-6)(x-7) = 0}

C = { x | x เป็นจำนวนเต็ม และ 4< x < 8}
D = { x | x เป็นจำนวนเต็มคี่ที่น้อยกว่า 9 }

พิจารณาข้อความว่าสมาชิกแต่ละเซตมีอะไรบ้าง เซตใดเท่ากันและเซตไหนไม่เท่ากัน

วิธีทำ หาสมาชิกของเซต  B, C และ D

พิจารณา B  ; x เป็นจำนวนเต็มที่สอดคล้องกับสมาการ                    (x-5)(x-6)(x-7) = 0 จะได้ว่า x = 5,6,7

ดังนั้น 5 ∈ B , 6 ∈ B และ 7 ∈ B เขียนเซต B แบบแจกแจงสมาชิกจะได้         B = {5,6,7}

พิจารณา C ; x เป็นจำนวนเต็มที่มากกว่า 4 และน้อยกว่า 8 ดังนั้น       x = 5,6,7

จะได้ว่า 5,6,7 ∈ C เขียนเซต C แบบแจกแจงสมาชิกจะได้ C = {5,6,7}

พิจารณา D ; x เป็นจำนวนเต็มคี่ที่น้อยกว่า 9 ดังนั้น D = {…,-3,-1,1,3,5,7}

จาก B = {5,6,7}, C = {5,6,7} และ D = {…,-3,-1,1,3,5,7}

ดังนั้น A=B=C แต่ A ≠ D , B ≠ D และ C ≠ D

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ระยะห่างของเส้นตรง

ระยะห่างของเส้นตรง

ระยะห่างของเส้นตรง ระยะห่างของเส้นตรง มีทั้งระยะห่างระหว่างจุดกับเส้นตรง และระหว่างเส้นตรงสองเส้นที่ขนานกัน ซึ่งจากบทความเรื่องเส้นตรง น้องๆพอจะทราบแล้วว่าเส้นตรงสองเส้นที่ขนานกันความชันจะเท่ากัน ในบทความนี้น้องๆจะทราบวิธีการหาระยะห่างของเส้นตรงที่ขนานกันด้วยซึ่งสามารถประยุกต์ใช้ในการหาสมการเส้นตรงได้ด้วย ระยะห่างระหว่างเส้นตรงกับจุด จากรูปจะได้ว่า  โดยที่ A, B และ C เป็นค่าคงที่ และ A, B ไม่เป็นศูนย์พร้อมกัน ตัวอย่าง1  หาระยะห่างระหว่างจุด (1, 5) และเส้นตรง 2x

การอ่านจับใจความ

การอ่านจับใจความ เทคนิคที่จะช่วยให้เข้าใจเนื้อหามากขึ้น

ปัญหาที่มักจะเกิดขึ้นได้บ่อยเวลาที่เราอ่านหนังสือเรียนจบแต่เมื่อถึงเวลาไปสอนกลับจำเนื้อหาที่อ่านมาไม่ได้เลย เพราะแท้จริงการอ่านเฉย ๆ ไม่ได้ช่วยให้เราจำเนื้อหาได้ แต่สิ่งที่จะช่วยให้เราได้เข้าใจแก่นของเรื่องที่อ่านจริง ๆ ก็คือการจับใจความสำคัญของเรื่องให้ได้นั่นเองค่ะ บทเรียนในวันนี้จะพาน้องไปเรียนรู้เกี่ยวกับเรื่อง การอ่านจับใจความ เพื่อช่วยให้สามารถจับประเด็นของเนื้อหาได้ โดยที่ไม่ต้องท่องจำให้เสียเวลาเลยค่ะ จะเป็นอย่างไรบ้างนั้น ไปดูพร้อมกันเลยค่ะ   การอ่านจับใจความ   เป็นการอ่านเพื่อจับใจความหรือข้อคิด ความคิดสำคัญหลักของข้อความ หรือเรื่องที่อ่าน เป็นข้อความที่คลุมข้อความอื่น ๆ ในย่อหน้าหนึ่ง ๆ ไว้ทั้งหมด  

โจทย์ปัญหา ห.ร.ม. และค.ร.น.

โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น.

บทความนี้เป็นเรื่องการแก้ โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น ซึ่งโจทย์ที่ได้นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเลือกใช้วิธีการแก้โจทย์ปัญหา รวมไปถึงการแสดงวิธีทำอย่างละเอียด หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน ซึงเป็นเเรื่องย่อยของ ห.ร.ม. และ ค.ร.น. ป.6

การบรรยายตนเอง + Present Simple

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับตัวเราในภาษาอังกฤษกันค่ะ ได้แก่ “ การบรรยายตนเอง + Present Simple “ พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลย   ทบทวน Present Simple Tense     ความหมาย: Present แปลว่า ปัจจุบัน ดังนั้น Present

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1