รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้

นิยาม

ให้  x, y เป็นจำนวนจริง และ n เป็นจำนวนเต็มที่มากกว่า 1 เราจะบอกว่า y เป็นรากที่ n ของ x ก็ต่อเมื่อ รากที่ n ของจำนวนจริง

 

เช่น 5 เป็นรากที่ 3 ของ 125 หรือไม่

จากที่เรารู้ว่า 5×5×5 = 125 ดังนั้น เราจึงสรุปได้ว่า 5 เป็นรากที่ 3 ของ 125 หรือสามารถพูดได้อีกแบบคือ รากที่ 3 ของ 125 คือ 5 เขียนให้สั้นลงได้เป็น \sqrt[3]{125}=5 นั่นเอง

ในกรณีที่ x = 0 จะได้ว่า \sqrt[n]{x} = 0

แต่ถ้า x > 0 จะได้ว่า n จะเป็นเลขคู่หรือคี่ก็ได้

**เมื่อ n เป็นจำนวนเต็มคู่ จะได้ว่า รากที่ n ของ x เป็นได้ทั้งจำนวนบวกและจำนวนลบ

เช่น -2, 2 เป็นรากที่ 4 ของ 16 เพราะ รากที่ n ของจำนวนจริง และ รากที่ n ของจำนวนจริง

 

ในกรณีที่ x < 0 ในระบบจำนวนจริง n ควรจะเป็นเลขคี่

สมมติว่า n เป็นเลขคู่

\sqrt[4]{-16}  จะเห็นว่าไม่มีจำนวนจริงใดยกกำลัง 4 แล้วได้ -16 เพราะปกติแล้วยกกำลังคู่ต้องได้จำนวนบวก ดังนั้นจึงไม่มีคำตอบในระบบจำนวนจริง (แต่มีคำตอบในจำนวนเชิงซ้อน ซึ่งน้องๆจะได้เรียนในบทจำนวนเชิงซ้อน)

สมมติว่า n เป็นเลขคี่

\sqrt[3]{-125} = -5 เพราะ (-5)×(-5)×(-5) = (-5)³ = -125

จำนวนจริงในรูปกรณฑ์

กรณฑ์ หรือค่าหลักของราก มีนิยามดังนี้

นิยาม

ให้ x, y เป็นจำนวนจริง และ n เป็นจำนวนเต็มที่มากกว่า 1 จะบอกว่า y เป็นค่าหลักของรากที่ n ของ x ก็ต่อเมื่อ

  1. y เป็นรากที่ n ของ x
  2. xy ≥ 0

จากนิยามจะเห็นว่า ถ้า y จะเป็นค่าหลักของรากที่ n ของ x ได้ จะได้ต้องมีคูณสมบัติครบทั้งสองข้อ มีข้อใดข้อหนึ่งไม่ได้

และเราจะเขียน \sqrt[n]{x} แทนค่าหลักของรากที่ n ของ x อ่านได้อีกอย่างว่า กรณฑ์ที่ n ของ x

ตัวอย่าง

-3 เป็นกรณฑ์ที่ 3 ของ -27 เพราะว่า

  1. -3 เป็นรากที่ 3 ของ 3 (เนื่องจาก รากที่ n ของจำนวนจริง)
  2. (-27)(-3) = 81 ≥ 0

-2 เป็นรากที่ 4 ของ 16 แต่ -2 นั้นไม่เป็นกรณฑ์ที่ 4 ของ 16 เพราะว่า (-2)(16) = -32 < 0

สมบัติที่ควรรู้

ให้ a, b เป็นจำนวนจริง และ m, n เป็นจำนวนเต็มที่มากกว่า 1

  1. จำนวนจริงในรูปกรณฑ์
  2. \sqrt[n]{1}=1
  3. \sqrt[n]{0}=0
  4. (\sqrt[n]{a})^n=a
  5. \sqrt[n]{ab}=\sqrt[n]{a}\times \sqrt[n]{b}
  6. \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},b\neq 0
  7. \sqrt[n]{a^{n}} = a เมื่อ n เป็นจำนวนเต็มคี่   เช่น  \sqrt[3]{(-3)^3} = -3 , \sqrt[5]{2^{5}}=2
  8. \sqrt[n]{a^{n}} = \left | a \right | เมื่อ n เป็นจำนวนเต็มคู่   เช่น \sqrt[4]{2^{4}}= \left | 2 \right |=2 , \sqrt[4]{(-3)^4}=\left | -3 \right |=3

 

สูตรลัดในการหารากที่ 2

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง

 

ตัวอย่าง

1.)     รากที่ n ของจำนวนจริง

 

2.)    \sqrt[3]{4\sqrt[3]{4\sqrt[3]{4...}}}= \sqrt[3-1]{4}=\sqrt[2]{4}=2

 

การหาผลบวก และผลต่างของจำนวนจริงในรูปกรณฑ์

วิธีการหาคือ

  1. อันดับของกรณฑ์ต้องเหมือนกัน
  2. เลขข้างในต้องเหมือนกันด้วย โดยอาจจะทำให้เป็นจำนวนเฉพาะหรืออาจจะทำให้เป็นจำนวนที่ต่ำที่สุด

ตัวอย่าง

1.) 3\sqrt{8}-\sqrt{2}+\sqrt{32}

รากที่ n ของจำนวนจริง

 

การหาผลคูณและผลหารของจำนวนจริงในรูปกรณฑ์

 

หลักการก็คือ

  1. อันดับของกรณฑ์ต้องเหมือนกัน
  2. ถ้าอันดับของกรณฑ์ไม่เหมือนกันจะต้องทำให้อันดับเหมือนกันก่อน โดยใช้สมบัติ   

 

ตัวอย่าง 

จะเขียน \sqrt[3]{8}\sqrt{6} ให้อยู่ในรูปอย่างง่าย

รากที่ n ของจำนวนจริง

 

 

วิดีโอ รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ  ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์ (1) ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง

ป.6 Possessive pronoun โดยใช้ Whose_ Which ร่วมด้วย

การใช้ Possessive pronoun โดยใช้ Whose/ Which ร่วมด้วย

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคนค่ะ วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Possessive pronoun โดยใช้ Whose/ Which ร่วมด้วย Let’s go! ไปลุยกันเลยจ้า   Possessive pronoun คืออะไร     What’s mine is yours, my dear.

P5 NokAcademy_การเรียนเกี่ยวกับทิศทางและการถามทาง

การเรียนเกี่ยวกับทิศทางและการถามทาง

สวัสดีค่ะนักเรียนป.5 ที่น่ารักทุกคน เคยมั้ยที่เราเจอฝรั่งถามทางแล้วตอบไม่ได้ ทำได้แค่ชี้ๆ แล้วก็บ๊ายบาย หากทุกคนเคยเจอปัญหานี้ ต้องท่องศัพท์และรู้โครงสร้างประโยคที่สำคัญในการถามทางแล้วล่ะ  หากพร้อมแล้วก็ไปลุยกันเลย กับหัวข้อ การเรียนเกี่ยวกับทิศทางและการถามทาง   มาเริ่มกับการ “ถาม-ตอบเกี่ยวกับทิศทาง”   วิธีการถามตอบ: โครงสร้าง:  How can I get to…(name of the place)..? แปล

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1