รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้

นิยาม

ให้  x, y เป็นจำนวนจริง และ n เป็นจำนวนเต็มที่มากกว่า 1 เราจะบอกว่า y เป็นรากที่ n ของ x ก็ต่อเมื่อ รากที่ n ของจำนวนจริง

 

เช่น 5 เป็นรากที่ 3 ของ 125 หรือไม่

จากที่เรารู้ว่า 5×5×5 = 125 ดังนั้น เราจึงสรุปได้ว่า 5 เป็นรากที่ 3 ของ 125 หรือสามารถพูดได้อีกแบบคือ รากที่ 3 ของ 125 คือ 5 เขียนให้สั้นลงได้เป็น \sqrt[3]{125}=5 นั่นเอง

ในกรณีที่ x = 0 จะได้ว่า \sqrt[n]{x} = 0

แต่ถ้า x > 0 จะได้ว่า n จะเป็นเลขคู่หรือคี่ก็ได้

**เมื่อ n เป็นจำนวนเต็มคู่ จะได้ว่า รากที่ n ของ x เป็นได้ทั้งจำนวนบวกและจำนวนลบ

เช่น -2, 2 เป็นรากที่ 4 ของ 16 เพราะ รากที่ n ของจำนวนจริง และ รากที่ n ของจำนวนจริง

 

ในกรณีที่ x < 0 ในระบบจำนวนจริง n ควรจะเป็นเลขคี่

สมมติว่า n เป็นเลขคู่

\sqrt[4]{-16}  จะเห็นว่าไม่มีจำนวนจริงใดยกกำลัง 4 แล้วได้ -16 เพราะปกติแล้วยกกำลังคู่ต้องได้จำนวนบวก ดังนั้นจึงไม่มีคำตอบในระบบจำนวนจริง (แต่มีคำตอบในจำนวนเชิงซ้อน ซึ่งน้องๆจะได้เรียนในบทจำนวนเชิงซ้อน)

สมมติว่า n เป็นเลขคี่

\sqrt[3]{-125} = -5 เพราะ (-5)×(-5)×(-5) = (-5)³ = -125

จำนวนจริงในรูปกรณฑ์

กรณฑ์ หรือค่าหลักของราก มีนิยามดังนี้

นิยาม

ให้ x, y เป็นจำนวนจริง และ n เป็นจำนวนเต็มที่มากกว่า 1 จะบอกว่า y เป็นค่าหลักของรากที่ n ของ x ก็ต่อเมื่อ

  1. y เป็นรากที่ n ของ x
  2. xy ≥ 0

จากนิยามจะเห็นว่า ถ้า y จะเป็นค่าหลักของรากที่ n ของ x ได้ จะได้ต้องมีคูณสมบัติครบทั้งสองข้อ มีข้อใดข้อหนึ่งไม่ได้

และเราจะเขียน \sqrt[n]{x} แทนค่าหลักของรากที่ n ของ x อ่านได้อีกอย่างว่า กรณฑ์ที่ n ของ x

ตัวอย่าง

-3 เป็นกรณฑ์ที่ 3 ของ -27 เพราะว่า

  1. -3 เป็นรากที่ 3 ของ 3 (เนื่องจาก รากที่ n ของจำนวนจริง)
  2. (-27)(-3) = 81 ≥ 0

-2 เป็นรากที่ 4 ของ 16 แต่ -2 นั้นไม่เป็นกรณฑ์ที่ 4 ของ 16 เพราะว่า (-2)(16) = -32 < 0

สมบัติที่ควรรู้

ให้ a, b เป็นจำนวนจริง และ m, n เป็นจำนวนเต็มที่มากกว่า 1

  1. จำนวนจริงในรูปกรณฑ์
  2. \sqrt[n]{1}=1
  3. \sqrt[n]{0}=0
  4. (\sqrt[n]{a})^n=a
  5. \sqrt[n]{ab}=\sqrt[n]{a}\times \sqrt[n]{b}
  6. \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},b\neq 0
  7. \sqrt[n]{a^{n}} = a เมื่อ n เป็นจำนวนเต็มคี่   เช่น  \sqrt[3]{(-3)^3} = -3 , \sqrt[5]{2^{5}}=2
  8. \sqrt[n]{a^{n}} = \left | a \right | เมื่อ n เป็นจำนวนเต็มคู่   เช่น \sqrt[4]{2^{4}}= \left | 2 \right |=2 , \sqrt[4]{(-3)^4}=\left | -3 \right |=3

 

สูตรลัดในการหารากที่ 2

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง

 

ตัวอย่าง

1.)     รากที่ n ของจำนวนจริง

 

2.)    \sqrt[3]{4\sqrt[3]{4\sqrt[3]{4...}}}= \sqrt[3-1]{4}=\sqrt[2]{4}=2

 

การหาผลบวก และผลต่างของจำนวนจริงในรูปกรณฑ์

วิธีการหาคือ

  1. อันดับของกรณฑ์ต้องเหมือนกัน
  2. เลขข้างในต้องเหมือนกันด้วย โดยอาจจะทำให้เป็นจำนวนเฉพาะหรืออาจจะทำให้เป็นจำนวนที่ต่ำที่สุด

ตัวอย่าง

1.) 3\sqrt{8}-\sqrt{2}+\sqrt{32}

รากที่ n ของจำนวนจริง

 

การหาผลคูณและผลหารของจำนวนจริงในรูปกรณฑ์

 

หลักการก็คือ

  1. อันดับของกรณฑ์ต้องเหมือนกัน
  2. ถ้าอันดับของกรณฑ์ไม่เหมือนกันจะต้องทำให้อันดับเหมือนกันก่อน โดยใช้สมบัติ   

 

ตัวอย่าง 

จะเขียน \sqrt[3]{8}\sqrt{6} ให้อยู่ในรูปอย่างง่าย

รากที่ n ของจำนวนจริง

 

 

วิดีโอ รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

คุณค่าในเรื่องพระอภัยมณี มีอะไรบ้าง?

หลังจากที่บทเรียนคราวที่แล้วเราได้เรียนเรื่องประวัติความเป็นมาของวรรณคดีเรื่องสุนทรภู่ไปแล้ว วันนี้เราจะพาน้อง ๆ ไปเรียนรู้ถึง คุณค่าในเรื่องพระอภัยมณี ว่ามีคุณค่าด้านใดบ้าง เพื่อที่น้อง ๆ จะได้รู้เหตุผลว่าทำไมวรรณคดีเรื่องนี้ถึงเป็นเรื่องที่โด่งที่สุดอีกเรื่องหนึ่งของสุนทรภู่ เป็นวรรณคดีที่ดังข้ามเวลาและอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   คุณค่าในเรื่องพระอภัยมณี     คุณค่าทางด้านวรรณศิลป์   พระอภัยมณีเป็นเรื่องมีรสทางวรรณคดีคือเสาวรจนีย์และสัลปังคพิสัย ดังนี้ เสาวรจนีย์ เป็นบทชมโฉมหรือความงาม พบในตอนที่พระอภัยชมความงามของนางเงือก     2.

การพูดอภิปราย

การพูดอภิปรายอย่างง่าย ทำได้ไม่ยาก

การพูดอภิปราย เป็นแบบการพูดซึ่งมีลักษณะคล้ายการสนทนาทั่วไป แต่ก็มีจุดที่แตกต่างกันอยู่ น้อง ๆ ทราบไหมคะว่าคืออะไร แล้วสรุปว่าการพูดอภิปรายคืออะไร มีหลักในการพูดอย่างไรได้บ้าง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักและฝึกพูดให้คล่อง เพื่อที่เมื่อถึงเวลาอภิปราย จะได้ผ่านกันแบบฉลุยไร้กังวล ถ้าอยากเรียนรู้แล้วล่ะก็ ไปดูพร้อม ๆ กันเลยค่ะ   ความหมายของการพูดอภิปราย   การพูดอภิปราย หมายถึง การพูดเพื่อแสดงความคิดเห็น แลกเปลี่ยนความรู้เกี่ยวกับเรื่องใดเรื่องหนึ่ง เพื่อใช้ในการแก้ปัญหา

บทพากย์เอราวัณ

บทพากย์เอราวัณ ที่มาของวรรณคดีพากย์โขนอันทรงคุณค่า

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้องรับเข้าสู่เนื้อหาวิชาภาษาไทยที่จะมาให้สาระความรู้ดี ๆ ซึ่งวันนี้เราจะมาเรียนรู้ความเป็นมาของวรรณคดีเรื่องหนึ่งที่มักจะใช้ในการแสดงโขน นั่นก็คือบทพากย์เอราวัณแน่นอนว่าน้อง ๆ ในระดับมัธยมต้นจะต้องได้เรียนเรื่องนี้ เพราะเป็นวรรณคดีอีกเรื่องที่แสดงถึงพระปรีชาสามารถของรัชกาลที่ 2 ในด้านกวีนิพนธ์จากการที่เลือกใช้ถ้อยคำภาษาที่สวยงามเพื่อมาบรรยายถึงลักษณะของช้างเอราวัณได้อย่างดี ดังนั้น ถ้าพร้อมแล้วมาดูกันว่าวันนี้เรามีเนื้อหาที่น่าสนใจอะไรมาฝากน้อง ๆ กันบ้างดีกว่า ประวัติความเป็นมา สำหรับวรรณคดี บทพากย์เอราวัณ เป็นอีกหนึ่งผลงานการพระราชนิพนธ์ในรัชสมัยของพระบาทสมเด็จพระพุทธเลิศหล้านภาลัย (รัชกาลที่ 2) ซึ่งถือเป็นบทที่นิยมนำไปใช้ในการแสดงโขน โดยได้เค้าโครงเรื่องมาจาก “รามายณะ”

เสภาขุนช้างขุนแผน

เสภาขุนช้างขุนแผน จากนิทานชาวบ้านสู่วรรณคดีราชสำนัก

เสภาเรื่องขุนช้างขุนแผน ได้รับการยกย่องจากวรรณคดีสโมสรว่าเป็นยอดของกลอนเสภาและเป็นที่ยอมรับกันในหมู่นักวรรณคดีว่าเป็นเลิศทั้งในด้านเนื้อเรื่องและการประพันธ์ มีมากมายหลายตอน หลายสำนวนและหลายผู้แต่ง แต่บทเรียนที่น้อง ๆ จะได้ศึกษากันในวันนี้เป็น เสภาขุนช้างขุนแผน ตอน ขุนช้างถวายฎีกา จะมีเนื้อหาและความเป็นมาอย่างไรเราไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของ เสภาขุนช้างขุนแผน   ขุนช้างขุนแผนสันนิษฐานว่าเป็นเรื่องจริงที่เกิดขึ้นในสมัยอยุธยา จากพงศาวดารทำให้ทราบว่าขุนแผนรับราชการอยู่ในสมัยสมเด็จพระพันวษา หรือ สมเด็จพระรามาธิบดีที่ 2 ซึ่งครองราชย์ระหว่าง พ.ศ. 2034-พ.ศ 2072 ต่อมามีการนำเรื่องขุนช้างขุนแผนมาแต่งเป็นกลอนสุภาพและบทเสภาโดยใช้กรับเป็นเครื่องประกอบจังหวะ

การตรวจสอบความสมเหตุสมผล

การตรวจสอบความสมเหตุสมผล

จากบทความที่ผ่านมาเราเรียนเรื่องการให้เหตุผลแบบนิรนัย บทความนี้เป็นเนื้อหาเรื่องการตรวจสอบความสมเหตุสมผลซึ่งมักจะออกสอบทั้งในโรงเรียนและ O-Net หลังจากน้องๆได้อ่านบทความนี้แล้วน้องๆจะทำข้อสอบได้แน่นอนค่ะ

ตัวอย่างโจทย์ปัญหา + – × ÷ เศษส่วนและจำนวนคละ

หัวใจสำคัญของการทำโจทย์ปัญหาก็คือการวิเคราะห์ประโยคที่เป็นตัวหนังสือออกมาเป็นสัญลักษณ์ทางคณิตศาสตร์หรือเรียกสั้นๆว่า “การตีโจทย์”ถ้าเราวิเคราะห์ถูกต้องเราก็สามารถแสดงวิธีคิดได้ออกมาอย่างถูกต้องคำตอบที่ได้ก็จะถูกต้องตามมาด้วย ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้คือการฝึกวิเคราะห์โจทย์ปัญหาและการแสดงวิธีทำ รับรองว่าถ้าอ่านบทความนี้แล้วนำไปใช้จะได้คำตอบที่ถูกทุกข้ออย่างแน่นอน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1