ฟังก์ชันและกราฟของฟังก์ชัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y

 

ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ

จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B

เซต A จะถูกเรียกว่า โดเมน และ สมาชิกของ x แต่ละตัวใน A ที่ถูกส่งไปยัง สมาชิกบางตัวของ y เราจะเรียกสมาชิกบางตัวของ y ว่า ภาพของ x และเรียกสมาชิกในภาพว่า เรนจ์

อ่านแล้วอาจจะงงๆลองมาดูตัวอย่างกันค่ะ

ตัวอย่าง

จากรูปจะเห็นว่า เรนจ์ไม่จำเป็นต้องเท่ากับ B สมาชิกบางตัวของ B ไม่จำเป็นต้องเป็นสมาชิกในเรนจ์ก็ได้

เมื่อเราเข้าใจว่าโดเมน และเรนจ์แล้วเรามาทำความเข้าใจกับฟังก์ชันและกราฟของฟังก์ชันกันต่อเลยค่ะ

ฟังก์ชัน

 

ฟังก์ชัน หมายถึง ความสัมพันธ์ (x, y) ใดๆ โดยที่ ถ้าตัวหน้าเหมือนกัน ตัวหลังจะต้องเหมือนกัน

แปลให้ง่ายก็คือ สมาชิกตัวหน้าจะต้องไม่เหมือนกันนั่นเองค่ะ

เช่น (1, 2) (2, 5) (-3, 4) เป็นฟังก์ชัน เพราะไม่สมาชิกของโดเมน จับคู่กับเรนจ์มากกว่า 1 ตัว

ในกรณีที่ฟังก์ชันเป็นกราฟ ให้เราลากเส้นขนาดแกน y ถ้าเกิดว่าเส้นที่เราสร้างขึ้นมาตัดกับกราฟของฟังก์ชันเกิน 1 จุด สรุปได้เลยว่ากราฟนั้นไม่เป็นฟังก์ชัน

เพราะอะไรถึงไม่เป็นฟังก์ชัน??

จากนิยามที่บอกว่า สมาชิกตัวหน้าต้องไม่เหมือนกัน

สมมติฟังก์ชันตัดกับกราฟที่เราสร้างขึ้น 2 จุด แสดงว่าค่า x 1 ค่า เกิดค่า y 2 ค่า มันก็เหมือนกับว่าสมาชิกตัวหน้ามันเหมือนกัน จึงไม่เป็นฟังก์ชัน

เช่น 

จากกราฟข้างต้นจะเห็นว่า เมื่อ x = 1 จะได้  y = 1 , -1 จะเห็นกว่า ได้ค่า y มาสองค่า กราฟนี้จึงไม่เป็นฟังก์ชันนั่นเอง

ฟังก์ชันจาก A ไป B

ให้ f เป็นฟังก์ชัน

f เป็นฟังก์ชันจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนเป็น A และเรนจ์เป็นสับเซตของ B

เขียนแทนด้วย  f : A →B

หมายความว่า สมาชิกทุกตัวใน A ทุกใช้จนหมด แต่สมาชิกใน B ไม่จำเป็นต้องถูกใช้ทุกตัว

เช่น

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันจาก A ไปทั่วถึง B

f เป็นฟังก์ชันจาก A ไปทั่วถึง B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนเป็น A และเรนจ์เป็น B

หมายความว่า สมาชิกทั้งในเซต A และ B ถูกใช้จนหมด

เช่น

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

f เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันจาก A ไป B ซึ่ง เมื่อส่งสมาชิกใน A ไปแล้วจะต้องได้ค่าเรนจ์ที่แตกต่างกัน

หมายความว่า ค่า x 2 ค่า จะต้องไม่ได้ค่า y ที่ซ้ำกันนั่นเอง

เช่น 

ฟังก์ชันและกราฟของฟังก์ชัน

 

f เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไปทั่วถึง B หมายความว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งและเป็นฟังก์ชันทั่วถึง

 

กราฟของฟังก์ชัน

 

กราฟของฟังก์ชัน คือ กราฟของความสัมพันธ์ที่กำหนดโดยสมการ y = f(x) ในระบบพิกัดฉากซึ่งประกอบไปด้วยจุดที่มีคู่อันดับเป็น (x, y) โดยที่ x เป็นสมาชิกในโดเมนของฟังก์ชัน และ y หรือ f(x) เป็นค่าของฟังก์ชันที่ขึ้นอยู่กับ x  และเราสามารถนำฟังก์ชันนี้มาเขียนกราฟในระบบพิกัดฉากได้

อธิบายง่ายๆได้ใจความคือ x เป็นตัวแปรอิสระ และ y เป็นตัวแปรตาม

ค่าของ y จะเปลี่ยนไปตาม x นั่นเอง

 

เช่น   y = x + 2 หรือเขียนอีกแบบคือ f(x) = x + 2

สมมติเราให้ x = 0 เราจะได้ว่า y = 0 + 2 นั่นคือ y = 2

สมมติให้ x = 1 เราจะได้ว่า y = 1 + 2 นั่นคือ  y = 3

ให้ x = -2  เราจะได้ว่า  y = (-2) + 2 นั่นคือ y = 0

เราจะเห็นว่า เมื่อค่า x เปลี่ยนไปค่า y ก็จะเปลี่ยนตามค่าของ x

จากการแทนค่าข้างต้น เราสามารถเขียนคู่อันดัล (x, y) ได้ดังนี้

(0, 2) , (1, 3) , (-2, 0)

และจากคู่อันดับเราสามารถนำมาเขียนกราฟได้ดังนี้

ฟังก์ชันและกราฟของฟังก์ชัน

 

การเขียนกราฟโดยการเลื่อนขนาน

ถ้า c > 0 แล้วจะได้ว่า

  1. กราฟของ y = f(x) + c คือ กราฟของ y = f(x) ที่ถูกเลื่อนขึ้นไปข้างบนเป็นระยะ c หน่วย
  2. กราฟของ y = f(x) – c คือ กราฟของ y = f(x) ที่ถูกเลื่อนลงข้างล่างเป็นระยะ c หน่วย
  3. กราฟของ y = f(x + c) คือ กราฟของ y = f(x) ที่ถูกเลื่อนไปทางขวาเป็นระยะ c หน่วย
  4. กราฟของ y = f(x – c) คือ กราฟของ y = f(x) ที่ถูกเลื่อนไปทางซ้ายเป็นระยะ c หน่วย

ตัวอย่าง

จงเขียนกราฟของ f(x)=\left | x \right |+5

กราฟของ f(x)=\left | x \right |+5 คือ กราฟของ y= \left | x \right | ที่ถูกเลื่อนขึ้นข้างบน 5 หน่วยนั่นเอง 

เขียนกราฟได้ดังนี้

ฟังก์ชันและกราฟของฟังก์ชัน

 

วิดีโอเกี่ยวกับ ฟังก์ชันและกราฟของฟังก์ชัน

 

ฟังก์ชัน

 

 

กราฟของฟังก์ชัน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

การหารเลขยกกำลัง

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก บทความนี้ ได้รวบรวมตัวอย่าง การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการหารของเลขยกกำลัง ก่อนจะเรียนรู้ ตัวอย่างการหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก น้องๆจำเป็นต้องมีความรู้ในเรื่อง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ⇐⇐ สมบัติของการหารเลขยกกำลัง  am ÷ an  = am – n     (ถ้าเลขยกกำลังฐานเหมือนกันหารกัน ให้นำเลขชี้กำลังมาลบกัน)

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม เป็นการนำเสนอข้อมูลโดยการเเบ่งพื้นที่ของวงกลมออกเป็นส่วน ๆ เเละมีขนาดของสัดส่วนตามข้อมูลที่ได้ทำการเก็บรวบรวมข้อมูลไว้ การนำเสนอด้วยเเผนภูมิวงกลมเป็นการนำเสนอข้อมูลที่มีอยู่ได้อย่างน่าสนใจ สามารถวิเคราะห์เเละเเปรข้อมูลได้ง่ายขึ้น การสร้างแผนภูมิรูปวงกลมเพื่อนำเสนอข้อมูล การสร้างแผนภูมิวงกลม ทำได้โดยการเเบ่งมุมรอบจุดศูนย์กลางของวงกลมที่มีขนาด 360 องศา ออกเป็นส่วน ๆ ที่เรียกว่า มุมที่จุดศูนย์กลางของวงกลม ตามขนาดที่ได้จากการเทียบส่วนกับปริมาณทั้งหมดในข้อมูล มุมที่จุดศูนย์กลาง = (จำนวนที่สนใจ/จำนวนทั้งหมด) x 360 องศา ตัวอย่างการสร้างแผนภูมิวงกลม จากข้อมูลการสำรวจที่ได้เก็บรวมรวบข้อมูลจากนักเรียนทั้งหมด 200

เสภาขุนช้างขุนแผน

เสภาขุนช้างขุนแผน จากนิทานชาวบ้านสู่วรรณคดีราชสำนัก

เสภาเรื่องขุนช้างขุนแผน ได้รับการยกย่องจากวรรณคดีสโมสรว่าเป็นยอดของกลอนเสภาและเป็นที่ยอมรับกันในหมู่นักวรรณคดีว่าเป็นเลิศทั้งในด้านเนื้อเรื่องและการประพันธ์ มีมากมายหลายตอน หลายสำนวนและหลายผู้แต่ง แต่บทเรียนที่น้อง ๆ จะได้ศึกษากันในวันนี้เป็น เสภาขุนช้างขุนแผน ตอน ขุนช้างถวายฎีกา จะมีเนื้อหาและความเป็นมาอย่างไรเราไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของ เสภาขุนช้างขุนแผน   ขุนช้างขุนแผนสันนิษฐานว่าเป็นเรื่องจริงที่เกิดขึ้นในสมัยอยุธยา จากพงศาวดารทำให้ทราบว่าขุนแผนรับราชการอยู่ในสมัยสมเด็จพระพันวษา หรือ สมเด็จพระรามาธิบดีที่ 2 ซึ่งครองราชย์ระหว่าง พ.ศ. 2034-พ.ศ 2072 ต่อมามีการนำเรื่องขุนช้างขุนแผนมาแต่งเป็นกลอนสุภาพและบทเสภาโดยใช้กรับเป็นเครื่องประกอบจังหวะ

ไตรภูมิพระร่วง เรียนรู้วรรณคดีเก่าแก่จากสมัยสุโขทัย

ไตรภูมิพระร่วง เป็นวรรณคดีเก่าแก่ที่แต่งขึ้นตั้งแต่สมัยสุโขทัย น้อง ๆ สงสัยไหมคะว่าทำไมวรรณคดีที่เก่าแก่ขนาดนี้ถึงยังมีให้เห็น ให้เราได้เรียนกันมาจนถึงปัจจุบัน บทเรียนในวันนี้จะพาน้อง ๆ ทุกคนไปไขข้องใจทั้งประวัติความเป็นมา ลักษณะคำประพันธ์ รวมไปถึงเรื่องย่อในตอน มนุสสภูมิ กันด้วย ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของเรื่อง   ไตรภูมิพระร่วง เดิมเรียกว่า เตภูมิกถา หรือ ไตรภูมิกถา แต่สมเด็จพระยาดำรงราชานุภาพ ทรงเปลี่ยนชื่อให้เพื่อเป็นเกียรติแก่พญาลิไท กษัตริย์ในราชวงศ์พระร่วงผู้พระราชนิพนธ์เรื่องนี้เมื่อปี

การใช้ There is และ There are ในประโยคคำถาม

สวัสดีค่ะนักเรียนชั้น ม.2 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ There is There are ในประโยคคำถาม ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ   There is/There are คืออะไร   There is และ There are แปลว่า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1