ฟังก์ชันผกผัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย f^{-1} เมื่อ f เป็นฟังก์ชัน

จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป

เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ

ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

พิจารณาตัวผกผันของ f เท่ากับ {(2, 1), (2, 3), (5, 4), (5, 6)}  จากนิยามของฟังก์ชัน ถ้าตัวหน้าเท่ากันแล้วตัวหลังจะต้องเท่ากัน ทำให้ได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างตัวผกผันของฟังก์ชัน

หาฟังก์ชันผกผันของ  เมื่อ

1.) f(x) = \frac{1}{x-2}

ให้ f(x) = y

ขั้นตอนที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x=\frac{1}{y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้  ฟังก์ชันผกผัน

ดังนั้น  = \frac{1}{x}+2  เมื่อ x ≠ 0 (เพราะถ้า x =0จะหาค่าไม่ได้)

2.) f(x) = \sqrt{x+3}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \sqrt{y+3}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ 

ดังนั้น f^{-1}(x) = x^2-3

 

3.) f(x) = \frac{2x-3}{3x-2}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \frac{2y-3}{3y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ ฟังก์ชันผกผัน

ดังนั้น f^{-1}(x) = \frac{2x-3}{3x-2}  เมื่อ x ≠  \frac{2}{3}

 

ให้ f(x) = 3x + 5 จงหา

4.) f^{-1}(3)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย 3

จะได้  f^{-1}(3) = \frac{5-3}{3}=\frac{2}{3}

 

5.) f^{-1}(-1)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย -1

จะได้  f^{-1}(-1) = \frac{5-(-1)}{3}=\frac{5+1}{3}=\frac{6}{3}=2

 

การตรวจสอบว่าตัวผกผันของ f เป็นฟังก์ชันหรือไม่

การตรวจสอบทำได้ 2 วิธี คือ

  1. หาตัวผกผันมาก่อนแล้วเช็คว่าตัวผกผันนั้นเป็นฟังก์ชันหรือไม่
  2. หาจากทฤษฎีบทต่อไปนี้

ตัวผกผันของ f เป็นฟังก์ชัน ก็ต่อเมื่อ f เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ขยายความทฤษฎีบท

ฟังก์ชันผกผันเรามีข้อความอยู่สองข้อความ ที่มีตัวเชื่อม ก็ต่อเมื่อขั้นกลางอยู่

ถ้าเรารู้ว่าฝั่งใดฝั่งหนึ่งจริง เราสามารถสรุปข้อความอีกฝั่งหนึ่งได้เลย

เช่น ถ้าเรารู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน เราก็จะรู้ด้วยว่า f เป็นฟังก์ชัน

ในขณะเดียวกัน ถ้าเรารู้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราก็จะรู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน

 

แต่ ถ้าเรารู้ว่าข้อความฝั่งหนึ่งไม่จริง เราก็สามารถสรุปได้เช่นกันว่า ข้อความอีกฝั่งก็ไม่จริง

เช่น เรารู้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน เราสามารถสรุปได้เลยว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ถ้าเรารู้ว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราสามารถสรุปได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างการตรวจสอบ ฟังก์ชันผกผัน

 

ให้ f เป็นฟังก์ชัน ที่ f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

วิธีทำ 1 จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะได้ว่า f^{-1}  = {(y, x ) : y, x ∈ \mathbb{R} และ y = 2x + 3}

หรือเขียนได้อีกแบบคือ f^{-1} = {(x, y) : x, y ∈ \mathbb{R} และ x = 2y + 3}  << ตรงสมการ เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะตรวจสอบว่า f^{-1} เป็นฟังก์ชันหรือไม่ โดยสมมติคู่อันดับมาสองคู่ ให้เป็น (x_1, y_1),(x_1,y_2) ซึ่งทั้งสองคู่อันดับนี้ เป็นคู่อันดับใน f^{-1}

ดังนั้นเราสามารถแทน คู่อันดับทั้งสองไปในสมการ x = 2y + 3 ได้

ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันจะได้ว่า f^{-1} เป็นฟังก์ชันเพราะ เมื่อสมาชิกตัวหน้าของคู่อันดับเหมือนกันสมาชิกตัวหลังก็เหมือนกันด้วย

วิธีที่ 2  จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะตรวจสอบว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่เพื่อนำมาสรุปการเป็นฟังก์ชันของf^{-1} 

สมมติให้ (x_1,y_1),(x_2,y_1) เป็นคู่อันดับใน f 

ดังนั้นเราสามารถแทนคู่อันดับทั้งสองคู่อันดับในสมการ y = 2x + 3 ได้

ได้เป็น ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันหนึ่งต่อหนึ่ง จะได้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพราะเมื่อเราให้สมาชิกตัวหลังเท่ากันแล้วเราได้ว่าสมาชิกตัวหน้าก็เท่ากัน

และ จาก f เป็นฟังก์ชันหนึ่งต่อหนึ่งเลยทำให้สรุปได้ว่า f^{-1} เป็นฟังก์ชัน

 

จากวิธีทั้งสองวิธี น้องๆสามารถเลือกวิธีตรวจสอบที่ตัวเองถนัดได้เลย ได้คำตอบเหมือนกันจ้า

 

เนื้อหาที่ควรรู้เพื่อง่ายต่อการทำความเข้าใจ

 

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Suggesting Profile

การใช้ Imperative for Advice

สวัสดีค่ะนักเรียนชั้น ม.2 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ “การใช้ Imperative for Advice หรือ การใช้ประโยคแนะนำในภาษาอังกฤษ”กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจร้า ประโยคแนะนำที่เจอบ่อย (Imperative for advice) คำศัพท์น่าสนใจ Advice (Noun): คำแนะนำ Advise (Verb): แนะนำ ประโยคคำแนะนำ ส่วนใหญ่แล้วจะเจอในรูปแบบของประโยคบอกเล่า ซึ่งจะมีความหมายในทางเสนอแนะ

สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล)

บทความนี้ได้รวบรวมความรู้เรื่อง ค่ากลางของข้อมูลและการกระจายของข้อมูล ซึ่งค่ากลางของข้อมูลจะประกอบด้วย ค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม ส่วนการวัดการกระจายของข้อมูลจะศึกษาในเรื่องการหาส่วนเบี่ยงเบนมาตรฐาน ซึ่งน้องๆสามารถทบทวน การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ได้ที่  ⇒⇒  การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ⇐⇐ หมายเหตุ ค่าเฉลี่ยในทางคณิตศาสตร์มีหลายชนิด แต่ที่นิยมใช้คือค่าเฉลี่ยเลขคณิต การวัดค่ากลางของข้อมูล  เป็นการหาค่ากลางมาเป็นตัวแทนของข้อมูลแต่ละชุด ซึ่งมีวิธีการหาได้หลายวิธีที่นิยมกัน ได้แก่ ค่าเฉลี่ยเลขคณิต มัธยฐาน ฐานนิยม ค่าเฉลี่ยเลขคณิต (Arithmetic

สัจนิรันดร์

ในบทความจะเขียนเกี่ยวกับวิธีการพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ ซึ่งจะเน้นให้น้องๆเข้าใจหลักการของการพิสูจน์ สิ่งที่น้องจะได้จากบทความนี้คือ น้องจะสามารถพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ได้และหากน้องๆขยันทำโจทย์บ่อยๆจะทำให้น้องวิเคราะห์โจทย์เกี่ยวกับสัจนิรันดร์ได้ง่ายขึ้นแน่นอนค่ะ

รากที่ n ของจำนวนจริง

รากที่ n ของจำนวนจริง และจำนวนจริงในรูปกรณฑ์

รากที่ n ของจำนวนจริง รากที่ n ของจำนวนจริง คือจำนวนจริงตัวหนึ่งยกกำลัง n แล้วเท่ากับ x   เมื่อ n > 1 เราสามารถตรวจสอบรากที่ n ได้ง่ายๆ โดยนิยามดังนี้ นิยาม ให้  x, y เป็นจำนวนจริง และ n

เพลงชาติไทย สัญลักษณ์ของความรักชาติที่ถูกถ่ายทอดผ่านบทเพลง

‘ประเทศไทยรวมเลือดเนื้อชาติเชื้อไทย’ เชื่อว่าพอขึ้นต้นด้วยประโยคนี้ จะต้องมีน้อง ๆ หลายคนอ่านเป็นทำนองแล้วร้องต่อในใจแน่นอนว่า ‘เป็นประชารัฐ ไผทของไทยทุกส่วน’ เพราะนี่คือ เพลงชาติไทย ที่เราได้ยินตอนแปดโมงเช้ากับหกโมงเย็นของทุกวันนั่นเองค่ะ บทเรียนในวันนี้เราจะมาเจาะลึกถึงความเป็นมา และความหมายของเพลงชาติไทยกันค่ะ มาดูพร้อมกันเลย   ประวัติความเป็นมาของ เพลงชาติไทย     ก่อนที่จะมีเพลงชาติไทย ประเทศไทยใช้เพลงสรรเสริญพระบารมีที่เป็นเพลงประจำองค์พระมหากษัตริย์ เป็นเพลงประจำชาติ จนถึงการเปลี่ยนแปลงการปกครองเมื่อวันที่ 24 มิถุนายน พ.ศ.

ความน่าเชื่อถือของสื่อที่ฟัง

ฟังอย่างไรให้ได้สาระประโยชน์ดี ๆ ด้วยวิธีวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟัง

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้อนรับเข้าสู่เนื้อหาในบทเรียนภาษาไทยกันอีกครั้ง สำหรับบทเรียนในวันนี้ต้องบอกว่ามีประโยชน์มาก ๆ และเราควรจะต้องศึกษาไว้เพื่อนำไปใช้ในการฟัง หรือคัดกรองสิ่งต่าง ๆ รอบตัวที่เรารับฟังมาให้มากขึ้น ซึ่งเราจะพาน้อง ๆ มาฝึกฝนการวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟังกัน เพราะในปัจจุบันเราสามารถรับสารได้หลากหลายรูปแบบมีทั้งประโยชน์ และโทษ ดังนั้น เราจึงต้องมีทักษะนี้ติดตัวไว้แยกแยะว่าสื่อนั้นมีความน่าเชื่อถือมากน้อยแค่ไหน ถ้าน้อง ๆ พร้อมแล้วเรามาเริ่มเรียนกันเลย   ความหมายของความน่าเชื่อถือ และสื่อ ความน่าเชื่อถือ หมายถึง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1