ฟังก์ชันผกผัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย f^{-1} เมื่อ f เป็นฟังก์ชัน

จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป

เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ

ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

พิจารณาตัวผกผันของ f เท่ากับ {(2, 1), (2, 3), (5, 4), (5, 6)}  จากนิยามของฟังก์ชัน ถ้าตัวหน้าเท่ากันแล้วตัวหลังจะต้องเท่ากัน ทำให้ได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างตัวผกผันของฟังก์ชัน

หาฟังก์ชันผกผันของ  เมื่อ

1.) f(x) = \frac{1}{x-2}

ให้ f(x) = y

ขั้นตอนที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x=\frac{1}{y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้  ฟังก์ชันผกผัน

ดังนั้น  = \frac{1}{x}+2  เมื่อ x ≠ 0 (เพราะถ้า x =0จะหาค่าไม่ได้)

2.) f(x) = \sqrt{x+3}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \sqrt{y+3}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ 

ดังนั้น f^{-1}(x) = x^2-3

 

3.) f(x) = \frac{2x-3}{3x-2}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \frac{2y-3}{3y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ ฟังก์ชันผกผัน

ดังนั้น f^{-1}(x) = \frac{2x-3}{3x-2}  เมื่อ x ≠  \frac{2}{3}

 

ให้ f(x) = 3x + 5 จงหา

4.) f^{-1}(3)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย 3

จะได้  f^{-1}(3) = \frac{5-3}{3}=\frac{2}{3}

 

5.) f^{-1}(-1)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย -1

จะได้  f^{-1}(-1) = \frac{5-(-1)}{3}=\frac{5+1}{3}=\frac{6}{3}=2

 

การตรวจสอบว่าตัวผกผันของ f เป็นฟังก์ชันหรือไม่

การตรวจสอบทำได้ 2 วิธี คือ

  1. หาตัวผกผันมาก่อนแล้วเช็คว่าตัวผกผันนั้นเป็นฟังก์ชันหรือไม่
  2. หาจากทฤษฎีบทต่อไปนี้

ตัวผกผันของ f เป็นฟังก์ชัน ก็ต่อเมื่อ f เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ขยายความทฤษฎีบท

ฟังก์ชันผกผันเรามีข้อความอยู่สองข้อความ ที่มีตัวเชื่อม ก็ต่อเมื่อขั้นกลางอยู่

ถ้าเรารู้ว่าฝั่งใดฝั่งหนึ่งจริง เราสามารถสรุปข้อความอีกฝั่งหนึ่งได้เลย

เช่น ถ้าเรารู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน เราก็จะรู้ด้วยว่า f เป็นฟังก์ชัน

ในขณะเดียวกัน ถ้าเรารู้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราก็จะรู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน

 

แต่ ถ้าเรารู้ว่าข้อความฝั่งหนึ่งไม่จริง เราก็สามารถสรุปได้เช่นกันว่า ข้อความอีกฝั่งก็ไม่จริง

เช่น เรารู้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน เราสามารถสรุปได้เลยว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ถ้าเรารู้ว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราสามารถสรุปได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างการตรวจสอบ ฟังก์ชันผกผัน

 

ให้ f เป็นฟังก์ชัน ที่ f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

วิธีทำ 1 จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะได้ว่า f^{-1}  = {(y, x ) : y, x ∈ \mathbb{R} และ y = 2x + 3}

หรือเขียนได้อีกแบบคือ f^{-1} = {(x, y) : x, y ∈ \mathbb{R} และ x = 2y + 3}  << ตรงสมการ เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะตรวจสอบว่า f^{-1} เป็นฟังก์ชันหรือไม่ โดยสมมติคู่อันดับมาสองคู่ ให้เป็น (x_1, y_1),(x_1,y_2) ซึ่งทั้งสองคู่อันดับนี้ เป็นคู่อันดับใน f^{-1}

ดังนั้นเราสามารถแทน คู่อันดับทั้งสองไปในสมการ x = 2y + 3 ได้

ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันจะได้ว่า f^{-1} เป็นฟังก์ชันเพราะ เมื่อสมาชิกตัวหน้าของคู่อันดับเหมือนกันสมาชิกตัวหลังก็เหมือนกันด้วย

วิธีที่ 2  จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะตรวจสอบว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่เพื่อนำมาสรุปการเป็นฟังก์ชันของf^{-1} 

สมมติให้ (x_1,y_1),(x_2,y_1) เป็นคู่อันดับใน f 

ดังนั้นเราสามารถแทนคู่อันดับทั้งสองคู่อันดับในสมการ y = 2x + 3 ได้

ได้เป็น ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันหนึ่งต่อหนึ่ง จะได้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพราะเมื่อเราให้สมาชิกตัวหลังเท่ากันแล้วเราได้ว่าสมาชิกตัวหน้าก็เท่ากัน

และ จาก f เป็นฟังก์ชันหนึ่งต่อหนึ่งเลยทำให้สรุปได้ว่า f^{-1} เป็นฟังก์ชัน

 

จากวิธีทั้งสองวิธี น้องๆสามารถเลือกวิธีตรวจสอบที่ตัวเองถนัดได้เลย ได้คำตอบเหมือนกันจ้า

 

เนื้อหาที่ควรรู้เพื่อง่ายต่อการทำความเข้าใจ

 

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.5 Modlas in the Past

Modals in the Past

  สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modals in the Past “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า   ทบทวน Modal Verbs      Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal

Like & Dislike ในการพูดถึงความชอบ และการให้ข้อมูลเกี่ยวกับตนเอง

สวัสดีน้องๆ ป. 5 ทุกคนนะครับผม วันนี้เราจะมาลองฝึกใช้ประโยคที่เอาไว้บอกความชอบของเรากัน พร้อมกับการให้ข้อมูลเกี่ยวกับตัวเองเบื้องต้นครับ ถ้าพร้อมแล้วไปลุยกันเลย

โจทย์ปัญหาการหารทศนิยม

บทความนี้เป็นเรื่องการวิเคราห์โจทย์ปัญหาการหารทศนิยม ซึ่งโจทย์ที่นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเขียนประโยคสัญลักษณ์ รวมไปถึงการสดงวิธีทำ หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน

อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย ซึ่งก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง อัตราส่วนที่เท่ากัน โดยการที่จะหาอัตราส่วนของจำนวนหลายๆจำนวนหรือเรียกอีกอย่างว่า อัตราส่วนต่อเนื่อง ได้นั้น น้องๆ จำเป็นต้องหา ค.ร.น. ของตัวร่วม ดังนั้นเรามาทบทวนวิธีการหา ค.ร.น. กันก่อนนะคะ จงหา ค.ร.น. ของ 3, 6 และ 12 3) 3     

เรียนรู้และทำความเข้าใจเรื่องประโยคซับซ้อนอย่างง่าย

น้อง ๆ หลายคนคงจะรู้โครงสร้างของประโยคกันอยู่แล้ว คือจะมีประธาน กริยา กรรม เป็นส่วนประกอบ แต่ในชีวิตจริงเราไม่ได้พูดกันตามโครงสร้างเสมอไป เพราะจะมีส่วนขยายมาเพิ่มความมากขึ้นเพื่อให้ผู้พูดและผู้รับฟังสื่อสารกันได้อย่างเข้าใจมากขึ้นจนบางครั้งก็อาจทำให้ดูซับซ้อนจนไม่รู้ว่าเป็นประโยคแบบไหนและอะไรคือใจความสำคัญของประโยค บทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับเรื่อง ประโยคซับซ้อน ทั้งประโยคความเดียวซับซ้อน ประโยคความรวมซับซ้อน และประโยคความซ้อนซับซ้อน ประโยคแต่ละชนิดจะเป็นอย่างไร ไปเรียนรู้พร้อม ๆ กันเลยค่ะ ประโยคเอย จงซับซ้อนยิ่งขึ้น !   ประโยคซับซ้อน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1