ฟังก์ชันผกผัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย f^{-1} เมื่อ f เป็นฟังก์ชัน

จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป

เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ

ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

พิจารณาตัวผกผันของ f เท่ากับ {(2, 1), (2, 3), (5, 4), (5, 6)}  จากนิยามของฟังก์ชัน ถ้าตัวหน้าเท่ากันแล้วตัวหลังจะต้องเท่ากัน ทำให้ได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างตัวผกผันของฟังก์ชัน

หาฟังก์ชันผกผันของ  เมื่อ

1.) f(x) = \frac{1}{x-2}

ให้ f(x) = y

ขั้นตอนที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x=\frac{1}{y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้  ฟังก์ชันผกผัน

ดังนั้น  = \frac{1}{x}+2  เมื่อ x ≠ 0 (เพราะถ้า x =0จะหาค่าไม่ได้)

2.) f(x) = \sqrt{x+3}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \sqrt{y+3}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ 

ดังนั้น f^{-1}(x) = x^2-3

 

3.) f(x) = \frac{2x-3}{3x-2}

ขั้นที่ 1 เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะได้  x = \frac{2y-3}{3y-2}

ขั้นที่ 2 จัดรูปให้ y อยู่เดี่ยวๆ

จะได้ ฟังก์ชันผกผัน

ดังนั้น f^{-1}(x) = \frac{2x-3}{3x-2}  เมื่อ x ≠  \frac{2}{3}

 

ให้ f(x) = 3x + 5 จงหา

4.) f^{-1}(3)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย 3

จะได้  f^{-1}(3) = \frac{5-3}{3}=\frac{2}{3}

 

5.) f^{-1}(-1)

ขั้นตอนที่ 1 หา f^{-1}(x)

จะได้ ฟังก์ชันผกผัน

ขั้นตอนที่ 2 แทนค่า x ด้วย -1

จะได้  f^{-1}(-1) = \frac{5-(-1)}{3}=\frac{5+1}{3}=\frac{6}{3}=2

 

การตรวจสอบว่าตัวผกผันของ f เป็นฟังก์ชันหรือไม่

การตรวจสอบทำได้ 2 วิธี คือ

  1. หาตัวผกผันมาก่อนแล้วเช็คว่าตัวผกผันนั้นเป็นฟังก์ชันหรือไม่
  2. หาจากทฤษฎีบทต่อไปนี้

ตัวผกผันของ f เป็นฟังก์ชัน ก็ต่อเมื่อ f เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ขยายความทฤษฎีบท

ฟังก์ชันผกผันเรามีข้อความอยู่สองข้อความ ที่มีตัวเชื่อม ก็ต่อเมื่อขั้นกลางอยู่

ถ้าเรารู้ว่าฝั่งใดฝั่งหนึ่งจริง เราสามารถสรุปข้อความอีกฝั่งหนึ่งได้เลย

เช่น ถ้าเรารู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน เราก็จะรู้ด้วยว่า f เป็นฟังก์ชัน

ในขณะเดียวกัน ถ้าเรารู้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราก็จะรู้ว่า ตัวผกผันของ f เป็นฟังก์ชัน

 

แต่ ถ้าเรารู้ว่าข้อความฝั่งหนึ่งไม่จริง เราก็สามารถสรุปได้เช่นกันว่า ข้อความอีกฝั่งก็ไม่จริง

เช่น เรารู้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน เราสามารถสรุปได้เลยว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ถ้าเรารู้ว่า f ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง เราสามารถสรุปได้ว่า ตัวผกผันของ f ไม่เป็นฟังก์ชัน

 

ตัวอย่างการตรวจสอบ ฟังก์ชันผกผัน

 

ให้ f เป็นฟังก์ชัน ที่ f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

วิธีทำ 1 จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะได้ว่า f^{-1}  = {(y, x ) : y, x ∈ \mathbb{R} และ y = 2x + 3}

หรือเขียนได้อีกแบบคือ f^{-1} = {(x, y) : x, y ∈ \mathbb{R} และ x = 2y + 3}  << ตรงสมการ เปลี่ยน x เป็น y เปลี่ยน y เป็น x

จะตรวจสอบว่า f^{-1} เป็นฟังก์ชันหรือไม่ โดยสมมติคู่อันดับมาสองคู่ ให้เป็น (x_1, y_1),(x_1,y_2) ซึ่งทั้งสองคู่อันดับนี้ เป็นคู่อันดับใน f^{-1}

ดังนั้นเราสามารถแทน คู่อันดับทั้งสองไปในสมการ x = 2y + 3 ได้

ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันจะได้ว่า f^{-1} เป็นฟังก์ชันเพราะ เมื่อสมาชิกตัวหน้าของคู่อันดับเหมือนกันสมาชิกตัวหลังก็เหมือนกันด้วย

วิธีที่ 2  จาก f = {(x, y) : x, y ∈ \mathbb{R} และ y = 2x + 3}

จะตรวจสอบว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่เพื่อนำมาสรุปการเป็นฟังก์ชันของf^{-1} 

สมมติให้ (x_1,y_1),(x_2,y_1) เป็นคู่อันดับใน f 

ดังนั้นเราสามารถแทนคู่อันดับทั้งสองคู่อันดับในสมการ y = 2x + 3 ได้

ได้เป็น ฟังก์ชันผกผัน

จากนิยามของฟังก์ชันหนึ่งต่อหนึ่ง จะได้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง เพราะเมื่อเราให้สมาชิกตัวหลังเท่ากันแล้วเราได้ว่าสมาชิกตัวหน้าก็เท่ากัน

และ จาก f เป็นฟังก์ชันหนึ่งต่อหนึ่งเลยทำให้สรุปได้ว่า f^{-1} เป็นฟังก์ชัน

 

จากวิธีทั้งสองวิธี น้องๆสามารถเลือกวิธีตรวจสอบที่ตัวเองถนัดได้เลย ได้คำตอบเหมือนกันจ้า

 

เนื้อหาที่ควรรู้เพื่อง่ายต่อการทำความเข้าใจ

 

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การพูดอภิปราย

การพูดอภิปรายอย่างง่าย ทำได้ไม่ยาก

การพูดอภิปราย เป็นแบบการพูดซึ่งมีลักษณะคล้ายการสนทนาทั่วไป แต่ก็มีจุดที่แตกต่างกันอยู่ น้อง ๆ ทราบไหมคะว่าคืออะไร แล้วสรุปว่าการพูดอภิปรายคืออะไร มีหลักในการพูดอย่างไรได้บ้าง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักและฝึกพูดให้คล่อง เพื่อที่เมื่อถึงเวลาอภิปราย จะได้ผ่านกันแบบฉลุยไร้กังวล ถ้าอยากเรียนรู้แล้วล่ะก็ ไปดูพร้อม ๆ กันเลยค่ะ   ความหมายของการพูดอภิปราย   การพูดอภิปราย หมายถึง การพูดเพื่อแสดงความคิดเห็น แลกเปลี่ยนความรู้เกี่ยวกับเรื่องใดเรื่องหนึ่ง เพื่อใช้ในการแก้ปัญหา

NokAcademy_Finite and Non- Finite Verb

Finite and Non- Finite Verb

Hi guys! สวัสดีค่ะนักเรียนชั้นม.6 ทุกคน วันนี้ครูจะพาไปทบทวนการใช้ “Finite and Non- Finite Verb” ในภาษาอังกฤษกันจร้า ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า   คำเตือน: การเรียนเรื่องนี้จะทำให้นักเรียนมึนงงได้หากว่าพื้นฐานเรื่อง Part of speech, Subject , Tense, Voice และ Mood ของเราไม่แน่น

ตัวอย่างโจทย์ปัญหา + – × ÷ ระคนของเศษส่วนและจำนวนคละ

บทความนี้จะยกตัวอย่างของโจทย์ปัญหาบวก ลบ คูณ หารระคนของเศษส่วนและจำนวนคละพร้อมทั้งวิธีวิเคราะห์โจทย์ การแก้โจทย์ปัญหาและหาคำตอบออกมาได้อย่างสมเหตุสมผล หลังจากอ่านบทความนี้จบน้อง ๆ จะสามารถทำความเข้าใจกับโจทย์ปัญหาบวก ลบ คูณ หารระคนของเศษส่วนและจำนวนคละและแก้โจทย์ได้ดียิ่งขึ้น

การพูดรายงานหน้าชั้น พูดอย่างไรให้ได้ใจผู้ฟัง

การพูดรายงานหน้าชั้น เป็นการแสดงผลงานศึกษาค้นคว้าโดยนำมาบอกเล่า ชี้แจง นำเสนอให้ผู้อื่นได้ทราบด้วย การพูดรายงานจึงมีความสำคัญในฐานะที่เป็นการเผยแพร่และแลกเปลี่ยนความรู้ความคิด บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้กันว่าหลักในการพูดรายงานหน้าชั้นนั้นมีอะไรบ้าง พูดอย่างไรจึงจะดึงดูดผู้ฟัง รวมไปถึงมารยาทขณะที่ออกไปพูดด้วย จะเป็นอย่างไรบ้างนั้นเราไปดูกันเลยค่ะ   หลักการพูดรายงานหน้าชั้น     1. กล่าวทักทายผู้ฟัง แนะนำผู้ร่วมงาน หัวข้อ จุดประสงค์ การทักทายถือเป็นการสร้างความประทับใจแรกให้แก่ผู้ฟัง ไม่ว่าหัวข้อที่เราจะนำมาพูดหน้าชั้นคืออะไร แต่หากเราพูดเนื้อหาขึ้นมาเลยแบบไม่มีปี่ไม่ขลุ่ย ก็อาจจะทำให้ผู้ฟังไม่อยากฟัง หรือคิดว่าการพูดหน้าชั้นของเราเป็นเรื่องน่าเบื่อ

Profile where + preposition P6

การใช้ประโยค Where’s the + (Building) + ? It’s + (Preposition Of Place)

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาทุกคนไปเรียนรู้เกี่ยวกับ ประโยค การถามทิศทาง แต่เอ้ะ Where is the building? แปลว่า ตึกอยู่ที่ไหน ประโยคนี้เป็นการถามทางแบบห้วนๆ ที่ใช้กับคนที่เราคุ้นชินหรือคนที่เรารู้จัก แต่หากนักเรียนต้องอยู่ในสถานการณ์ที่ต้องถามกับคนแปลกหน้าโดยเฉพาะฝรั่ง คงต้องมาฝึกถามให้สุภาพมากขึ้น ดังนั้นจึงต้องมีการเกริ่นขึ้นก่อนที่เราจะถามนั่นเองค่ะ ซึ่งนักเรียนที่รักทุกคนได้เรียนรู้ในบทเรียนนี้นะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบการถามทิศทาง   โครงสร้างประโยคถามแบบตรงๆ (Direct Question) “

คำสมาสแบบสมาส คำสมาสแบบสนธิ

เรียนรู้หลักการสร้างคำสมาสแบบสมาส และคำสมาสแบบสนธิ

บทนำ คำสมาส และคำสนธิ ถือว่าเป็นหนึ่งบทเรียนในหลักภาษาไทยของระดับชั้นมัธยมศึกษาตอนต้นที่หลายคนมักมองว่าเป็นเรื่องยาก และปราบเซียนในการสอบสุด ๆ เนื่องจากว่าเราจะต้องมีพื้นฐานความเข้าใจเรื่อง คำบาลี สันสกฤตเพื่อให้สามารถแยกแยะคำ หรือสร้างคำใหม่ได้ รวมไปถึงต้องจำหลักการอ่านเชื่อมเสียงแบบต่าง ๆ จึงทำให้ใครหลายคนรู้สึกว่ามันยากมาก แต่จริง ๆ แล้วน้อง ๆ หลายคนอาจเคยได้ยินหลักการจำที่ว่า “คำสมาสนำมาชน สนธินำมาเชื่อม” ซึ่งเป็นวิธีที่น้อง ๆ ควรจะใช้เป็นแนวทางในการจำอย่างเข้าใจ ดังนั้น เพื่อเป็นการเรียนรู้เรื่องคำสมาสแบบสมาส และคำสมาสแบบสนธิให้เข้าใจมากขึ้น

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1