ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม จะเกี่ยวข้องกับมุมที่มีหน่วยเป็นองศา (degree) และมุมที่มัหน่วยเป็นเรเดียน (radian)

ในบทความนี้จะกล่าวถึงมุมทั้งหน่วยองศาและเรเดียน มุมฉาก การเปลี่ยนหน่วยของมุม สมบัติของฟังก์ชันตรีโกณมิติ และสามเหลี่ยมมุมฉาก

ก่อนที่จะเริ่มเข้าสู่เนื้อหา พี่อยากให้น้องๆได้รู้พื้นฐานเกี่ยวกับฟังก์ชันตรีโกณมิติเพื่อที่จะได้เข้าใจเนื้อหาในบทความนี้มากขึ้น

  • การวัดความยาวส่วนโค้ง
  • ค่าของฟังก์ชันไซน์และโคไซน์
  • ฟังก์ชันตรีโกณมิติอื่นๆ

หลังจากที่ไปทบทวนความรู้มาแล้วเรามาเริ่มเนื้อหาใหม่กันเลยค่ะ

หน่วยของมุม

1.) องศา (degree) คือหน่วยของมุมในระนาบ 2 มิติ โดยที่

1 มุมฉาก = 90°

1°            = 60′ (ลิปดา)

1′            = 60″ (ฟิลิปดา)

มุมฉากที่น้องๆคุ้นกัน ก็คือ สามเหลี่ยมมุมฉาก

2.) เรเดียน (radian) คือหน่วยวัดมุมบนระนาบ 2 มิติ

มุม 1 เรเดียน คือขนาดของมุมที่วัดจากจุดศูนย์กลางของวงกลมที่กางออกตามส่วนโค้ง ซึ่งความยาวส่วนโค้งมีความยาวเท่ากับรัศมีของวงกลมพอดี

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้น มุม θ = \frac{a}{r}

 

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้นถ้าเราหมุนรัศมีครบ 1 รอบ จะได้ว่า a=2\pi r นั่นคือ θ = 2\piเรเดียน

จากนั้นเรามาพิจารณามุมฉาก (90°) ซึ่ง a=\frac{2\pi r}{4}

ดังนั้น 90° = \frac{\pi}{2}    ⇒    180° = \pi

ตัวอย่างการเปลี่ยนหน่วยของมุม

  • 5\pi เรเดียน เปลี่ยนเป็นองศา

จาก \pi = 180° ดังนั้น 5\pi = 5(180) = 900°

  • \frac{4\pi}{3} เรเดียน เปลี่ยนเป็นองศา

จะได้  \frac{4\pi}{3} = \frac{4(180)}{3} = 240°

  • 780° เปลี่ยนเป็นเรเดียน

ใช้วิธีเทียบสัดส่วน คือ

180° = \pi

780° = \frac{780\pi }{180} = \frac{13\pi }{3}

  • -330° เปลี่ยนเป็นเรเดียน

จะได้ \frac{-330\pi }{180} = \frac{-11\pi }{6}

ฟังก์ชันตรีโกณมิติของมุม 180° ± A, 360±A และ (-A) เมื่อ 0 < A < 90°

sin(180° – A) = sinA                      cosec(180° – A) = cosecA

cos(180° – A) = -cosA                   sec(180° – A) = -secA

tan(180° – A) = -tanA                   cot(180° – A) = -cotA

————————————————————————————————

sin(180° + A) = -sinA                      cosec(180° + A) = -cosecA

cos(180° + A) = -cosA                   sec(180° + A) = -secA

tan(180° + A) = tanA                   cot(180° + A) = cotA

————————————————————————————————

sin(360° + A) = sinA                      cosec(360° + A) = cosecA

cos(360° + A) = cosA                   sec(360° + A) = secA

tan(360° + A) = tanA                   cot(360° + A) = cot

————————————————————————————————

sin(360° – A) = -sinA                      cosec(360° – A) = -cosecA

cos(360° – A) = cosA                      sec(360° – A) = secA

tan(360° – A) = -tanA                   cot(360° – A) = -cot
————————————————————————————————
sin(-A) = -sinA                             cosec(-A) = -cosecA

cos(-A) = cosA                             sec(-A) = secA

tan(-A) = -tanA                           cot(-A) = -cotA

ฟังก์ชันตรีโกณมิติของมุม ของรูปสามเหลี่ยมมุมฉาก

A, B และ C เป็นมุมของสามเหลี่ยม

ในรูปนี้จะพิจารณามุม A

a แทนความยาวด้านตรงข้ามมุม A ⇒ ข้าม

b แทนความยาวด้านประชิดมุม A ⇒ ชิด

c แทนความยาวด้านตรงข้ามมุมฉาก ⇒ ฉาก

จากรูปจะได้ว่า

sinA = ข้าม/ฉาก = \frac{a}{c}

cosA = ชิด/ฉาก = \frac{b}{c}

tanA = ข้าม/ชิด = \frac{a}{b}

 

ตัวอย่าง

ให้ cosθ = \inline \frac{-3}{5} และ \frac{\pi }{2} ≤ θ ≤ \pi

ขั้นแรกเราจะพิจารณาเงื่อนไขที่โจทย์ให้มา นั่นก็คือ \frac{\pi }{2} ≤ θ ≤ \pi

ซึ่งจากเงื่อนไขนี้สามารถบอกได้ว่าเรากำลังพิจารณาค่าของฟังก์ชันตรีโกณที่อยู่ใน ควอดรันต์ที่ 2

ดังนั้น sinθ, cosecθ มีค่าเป็นบวก tanθ, cotθ และ secθ มีค่าเป็นลบ

จาก cosθ = \inline \frac{-3}{5} = ชิด/ฉาก เราจะวาดรูปได้ดังนี้

หา a โดยใช้ทฤษฎีบทพีทาโกรัส

c² = a² + b²

25 = a² + 9

a² = 16

a = ±4

จาก a คือความยาว ดังนั้น a = 4

ดังนั้น sinθ = \inline \frac{4}{5}

tanθ = \inline -\frac{4}{3}

cotθ = \inline -\frac{3}{4}

secθ = \inline -\frac{5}{3}

cosecθ = \inline \frac{5}{4}

การหาขนาดของมุมจากรูปสามเหลี่ยมมุมฉาก

ถ้าเรามีรูปสามเหลี่ยมที่บอกความยาวด้านมา เราสามารถหามุมได้โดยใช้ข้อมูลเหล่านั้นช่วย

เช่น

1)

จากรูปจะเห็นว่าบอกความความยาวด้านชิดมุมA และด้านตรงข้ามมุมฉาก

นั่นคือ รู้ชิด รู้ฉาก  ดังนั้นเราจะหามุมจากฟังก์ชันcos

cosA = \inline \frac{\sqrt{3}}{\sqrt{6}} = \inline \frac{1}{\sqrt{2}} = \inline \frac{\sqrt{2}}{2}

ดังนั้น A = 45°

2)

จากรูป เรารู้ความยาวด้านชิดมุมA และด้านตรงข้ามมุมA

ดังนั้นจะหาโดยใช้ tanA = \inline \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{3}

ดังนั้น A = 60°

มุมอื่นๆที่ควรรู้

มุม A = 35 จะได้ sin35° = \inline \frac{3}{5} และ cos35° = \inline \frac{4}{5}

มุมA = 53 จะได้ sin53° = \inline \frac{4}{5} และ cos53° = \inline \frac{3}{5}

วิดีโอเพิ่มเติม

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Comparison of Adjectives การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ

  สวัสดีค่ะนักเรียนชั้นป. 5 ที่น่ารักทุกคน ยินดีต้อนรับทุกคนเข้าสู่บทเรียนเรื่องคำคุณศัพท์กันนะคะ วันนี้ครูได้ สรุปเรื่อง Comparison of Adjectives หรือ การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ มาฝาก ไปลุยกันเลย ความหมาย Comparison of Adjectives คือ การเปรียบเทียบคำคุณศัพท์ ที่ใช้ในการเปรียบเทียบคน สัตว์ สิ่งของ หรือ อื่นๆ

M1 การใช้ Verb Be

การใช้ Verb Be

สวัสดีค่ะนักเรียนชั้นม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Verb Be กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! ความหมาย   Verb be ในที่นี้จะแปลว่า Verb to be นะคะ แปลว่า เป็น อยู่ คือ ซึ่งหลัง verb to

ป6การใช้ love, like, enjoy, hate ในการเเต่งประโยค

การใช้ love, like, enjoy, hate ในการเเต่งประโยค

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้  love, like, enjoy, hate ในการเเต่งประโยค หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go!   โครงสร้าง: In my free time/ In my spare time,…     In my

การบอกลักษณะต่างๆ โดยใช้คำคุณศัพท์ Profile

การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิค การบอกลักษณะต่างๆโดยใช้คำคุณศัพท์ (Descriptive Adjective) กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า    ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

โวหารภาพพจน์ กลวิธีการสร้างจินตภาพที่ลึกซึ้งและสวยงาม

การสร้างจินตภาพอย่างการใช้ โวหารภาพพจน์ เป็นกลวิธีในการใช้ภาษาอีกอย่างหนึ่ง เลือกใช้ถ้อยคำเพื่อให้ผู้อ่านเห็นภาพ หรืออาจเรียกว่าเป็นการแทนภาพนั่นเอง น้อง ๆ คงจะพบเรื่องของโวหารภาพพจน์ได้บ่อย ๆ เวลาเรียนเรื่องวรรณคดี บทเรียนในวันนี้เลยจะพาไปทำความรู้จักกับภาพพจน์ต่าง ๆ ให้มากขึ้นว่ามีอะไรบ้าง ถ้าพร้อมแล้วไปดูพร้อมกันเลยค่ะ   ความหมายของภาพพจน์     ภาพพจน์ คือถ้อยคำที่เป็นสำนวนโวหารทำให้นึกเห็นภาพ ถ้อยคำที่เรียบเรียงอย่างมีชั้นเชิงเป็นโวหาร มีเจตนาให้มีประสิทธิผลต่อความคิด เป็นกลวิธีทางภาษาที่มุ่งให้เกิดความรู้ความเข้าใจจินตนาการ เน้นให้เกิดอรรถรสและสุนทรีย์ในการสื่อสารที่ลึกซึ้งกว่าการบอกเล่าแบบตรงไปตรงมา  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1