ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม จะเกี่ยวข้องกับมุมที่มีหน่วยเป็นองศา (degree) และมุมที่มัหน่วยเป็นเรเดียน (radian)

ในบทความนี้จะกล่าวถึงมุมทั้งหน่วยองศาและเรเดียน มุมฉาก การเปลี่ยนหน่วยของมุม สมบัติของฟังก์ชันตรีโกณมิติ และสามเหลี่ยมมุมฉาก

ก่อนที่จะเริ่มเข้าสู่เนื้อหา พี่อยากให้น้องๆได้รู้พื้นฐานเกี่ยวกับฟังก์ชันตรีโกณมิติเพื่อที่จะได้เข้าใจเนื้อหาในบทความนี้มากขึ้น

  • การวัดความยาวส่วนโค้ง
  • ค่าของฟังก์ชันไซน์และโคไซน์
  • ฟังก์ชันตรีโกณมิติอื่นๆ

หลังจากที่ไปทบทวนความรู้มาแล้วเรามาเริ่มเนื้อหาใหม่กันเลยค่ะ

หน่วยของมุม

1.) องศา (degree) คือหน่วยของมุมในระนาบ 2 มิติ โดยที่

1 มุมฉาก = 90°

1°            = 60′ (ลิปดา)

1′            = 60″ (ฟิลิปดา)

มุมฉากที่น้องๆคุ้นกัน ก็คือ สามเหลี่ยมมุมฉาก

2.) เรเดียน (radian) คือหน่วยวัดมุมบนระนาบ 2 มิติ

มุม 1 เรเดียน คือขนาดของมุมที่วัดจากจุดศูนย์กลางของวงกลมที่กางออกตามส่วนโค้ง ซึ่งความยาวส่วนโค้งมีความยาวเท่ากับรัศมีของวงกลมพอดี

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้น มุม θ = \frac{a}{r}

 

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้นถ้าเราหมุนรัศมีครบ 1 รอบ จะได้ว่า a=2\pi r นั่นคือ θ = 2\piเรเดียน

จากนั้นเรามาพิจารณามุมฉาก (90°) ซึ่ง a=\frac{2\pi r}{4}

ดังนั้น 90° = \frac{\pi}{2}    ⇒    180° = \pi

ตัวอย่างการเปลี่ยนหน่วยของมุม

  • 5\pi เรเดียน เปลี่ยนเป็นองศา

จาก \pi = 180° ดังนั้น 5\pi = 5(180) = 900°

  • \frac{4\pi}{3} เรเดียน เปลี่ยนเป็นองศา

จะได้  \frac{4\pi}{3} = \frac{4(180)}{3} = 240°

  • 780° เปลี่ยนเป็นเรเดียน

ใช้วิธีเทียบสัดส่วน คือ

180° = \pi

780° = \frac{780\pi }{180} = \frac{13\pi }{3}

  • -330° เปลี่ยนเป็นเรเดียน

จะได้ \frac{-330\pi }{180} = \frac{-11\pi }{6}

ฟังก์ชันตรีโกณมิติของมุม 180° ± A, 360±A และ (-A) เมื่อ 0 < A < 90°

sin(180° – A) = sinA                      cosec(180° – A) = cosecA

cos(180° – A) = -cosA                   sec(180° – A) = -secA

tan(180° – A) = -tanA                   cot(180° – A) = -cotA

————————————————————————————————

sin(180° + A) = -sinA                      cosec(180° + A) = -cosecA

cos(180° + A) = -cosA                   sec(180° + A) = -secA

tan(180° + A) = tanA                   cot(180° + A) = cotA

————————————————————————————————

sin(360° + A) = sinA                      cosec(360° + A) = cosecA

cos(360° + A) = cosA                   sec(360° + A) = secA

tan(360° + A) = tanA                   cot(360° + A) = cot

————————————————————————————————

sin(360° – A) = -sinA                      cosec(360° – A) = -cosecA

cos(360° – A) = cosA                      sec(360° – A) = secA

tan(360° – A) = -tanA                   cot(360° – A) = -cot
————————————————————————————————
sin(-A) = -sinA                             cosec(-A) = -cosecA

cos(-A) = cosA                             sec(-A) = secA

tan(-A) = -tanA                           cot(-A) = -cotA

ฟังก์ชันตรีโกณมิติของมุม ของรูปสามเหลี่ยมมุมฉาก

A, B และ C เป็นมุมของสามเหลี่ยม

ในรูปนี้จะพิจารณามุม A

a แทนความยาวด้านตรงข้ามมุม A ⇒ ข้าม

b แทนความยาวด้านประชิดมุม A ⇒ ชิด

c แทนความยาวด้านตรงข้ามมุมฉาก ⇒ ฉาก

จากรูปจะได้ว่า

sinA = ข้าม/ฉาก = \frac{a}{c}

cosA = ชิด/ฉาก = \frac{b}{c}

tanA = ข้าม/ชิด = \frac{a}{b}

 

ตัวอย่าง

ให้ cosθ = \inline \frac{-3}{5} และ \frac{\pi }{2} ≤ θ ≤ \pi

ขั้นแรกเราจะพิจารณาเงื่อนไขที่โจทย์ให้มา นั่นก็คือ \frac{\pi }{2} ≤ θ ≤ \pi

ซึ่งจากเงื่อนไขนี้สามารถบอกได้ว่าเรากำลังพิจารณาค่าของฟังก์ชันตรีโกณที่อยู่ใน ควอดรันต์ที่ 2

ดังนั้น sinθ, cosecθ มีค่าเป็นบวก tanθ, cotθ และ secθ มีค่าเป็นลบ

จาก cosθ = \inline \frac{-3}{5} = ชิด/ฉาก เราจะวาดรูปได้ดังนี้

หา a โดยใช้ทฤษฎีบทพีทาโกรัส

c² = a² + b²

25 = a² + 9

a² = 16

a = ±4

จาก a คือความยาว ดังนั้น a = 4

ดังนั้น sinθ = \inline \frac{4}{5}

tanθ = \inline -\frac{4}{3}

cotθ = \inline -\frac{3}{4}

secθ = \inline -\frac{5}{3}

cosecθ = \inline \frac{5}{4}

การหาขนาดของมุมจากรูปสามเหลี่ยมมุมฉาก

ถ้าเรามีรูปสามเหลี่ยมที่บอกความยาวด้านมา เราสามารถหามุมได้โดยใช้ข้อมูลเหล่านั้นช่วย

เช่น

1)

จากรูปจะเห็นว่าบอกความความยาวด้านชิดมุมA และด้านตรงข้ามมุมฉาก

นั่นคือ รู้ชิด รู้ฉาก  ดังนั้นเราจะหามุมจากฟังก์ชันcos

cosA = \inline \frac{\sqrt{3}}{\sqrt{6}} = \inline \frac{1}{\sqrt{2}} = \inline \frac{\sqrt{2}}{2}

ดังนั้น A = 45°

2)

จากรูป เรารู้ความยาวด้านชิดมุมA และด้านตรงข้ามมุมA

ดังนั้นจะหาโดยใช้ tanA = \inline \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{3}

ดังนั้น A = 60°

มุมอื่นๆที่ควรรู้

มุม A = 35 จะได้ sin35° = \inline \frac{3}{5} และ cos35° = \inline \frac{4}{5}

มุมA = 53 จะได้ sin53° = \inline \frac{4}{5} และ cos53° = \inline \frac{3}{5}

วิดีโอเพิ่มเติม

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โคลนติดล้อ บทความปลุกใจในรัชกาลที่ 6

เป็นที่รู้กันดีกว่าพระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ของเรานั้น ทรงโปรดงานด้านวรรณกรรมมาตั้งแต่ยังเยาว์ และเริ่มงานวรรณกรรมตั้งแต่ยังทรงศึกษาอยู่ที่ประเทศอังกฤษ ทำให้มีผลงานในพระราชนิพนธ์มากมายหลายเรื่อง และแตกต่างกันออกไป ที่ผ่านมาน้อง ๆ คงจะได้เรียนมาหลายเรื่องแล้ว บทเรียนในวันนี้ก็จะพาน้อง ๆ ไปรู้จักกับผลงานของพระองค์อีกเรื่องหนึ่ง แตกต่างจากเรื่องก่อน ๆ ที่เคยเรียนมาอย่างแน่นอน เพราะเรากำลังพูดถึงโคลนติดล้อ ผลงานในพระราชนิพนธ์ที่อยู่ในรูปแบบของบทความ จะมีที่มา มีเนื้อหาที่น่าสนใจอย่างไรบ้างนั้น เราไปติดตามกันเลยค่ะ   ที่มาของ โคลนติดล้อ

เรียนรู้เรื่องการสร้างคำประสมในภาษาไทย

การสร้างคำประสม   คำพูดที่เราพูดกันอยู่ทุกวันนั้น ๆ น้องรู้ไหมคะว่ามีที่มาอย่างไร ทำไมถึงเกิดเป็นคำนี้ให้เราเอามาพูดกันได้ นั่นก็เพราะว่าในภาษาไทยเรานั้นมีสิ่งที่เรียกว่าการสร้างคำอยู่นั่นเองค่ะ ซึ่งการสร้างคำก็มีทั้งคำที่ถูกสร้างขึ้นใหม่โดยเฉพาะ เป็นคำมูล คำไทยแท้ กับอีกลักษณะคือการสร้างคำจากคำมูลนั่นเองค่ะ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้การสร้างคำประสมในภาษาไทย คำประสมคือคำแบบใดบ้าง เราไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   คำประสม     คำประสม หมายถึงคำที่เกิดจากนำคำ 2

ป.5เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

สวัสดีนักเรียนชั้นมป.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับ  “เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลยค่า Let’s go! ความหมาย   Present แปลว่า ปัจจุบัน  Simple แปลว่า ธรรมดา ส่วน Tense นั้น แปลว่ากาล ดังนั้น

การบรรยายตนเอง + Present Simple

สวัสดีนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับตัวเราในภาษาอังกฤษกันค่ะ ได้แก่ “ การบรรยายตนเอง + Present Simple “ พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันเลย   ทบทวน Present Simple Tense     ความหมาย: Present แปลว่า ปัจจุบัน ดังนั้น Present

สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ สมบัติสมมาตร ถ้า a = b แล้ว b = a เมื่อ a และ

ถอดคำประพันธ์ กลอนดอกสร้อยรำพึงในป่าช้า พร้อมศึกษาคุณค่าในเรื่อง

  ในบทเรียนก่อนหน้าเราได้เรียนรู้ประวัติความเป็นมา ลักษณะคำประพันธ์และเรื่องย่อกลอนดอกสร้อยรำพึงในป่าช้าไปแล้ว บทเรียนภาษาไทยในวันนี้จะต่อเนื่องกับครั้งก่อนโดยการพาน้อง ๆ ไปเรียนรู้เรื่องตัวบทเด่น ๆ ถอดคำประพันธ์ กลอนดอกสร้อยรำพึงในป่าช้า พร้อมทั้งศึกษาคุณค่าที่แฝงอยู่ในเรื่อง ไม่ว่าจะเป็นด้านสังคม เนื้อหา หรือด้านวรรณศิลป์ ถ้าน้อง ๆ พร้อมจะเรียนวรรณคดีเรื่องนี้ต่อไปแล้ว ก็ไปลุยพร้อมกันเลยค่ะ     ถอดคำประพันธ์ กลอนดอกสร้อยรำพึงในป่าช้า   สกุลเอ๋ยสกุลสูง ชักจูงจิตชูศักดิ์ศรี อำนาจนำความสง่าอ่าอินทรีย์

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1