ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม จะเกี่ยวข้องกับมุมที่มีหน่วยเป็นองศา (degree) และมุมที่มัหน่วยเป็นเรเดียน (radian)

ในบทความนี้จะกล่าวถึงมุมทั้งหน่วยองศาและเรเดียน มุมฉาก การเปลี่ยนหน่วยของมุม สมบัติของฟังก์ชันตรีโกณมิติ และสามเหลี่ยมมุมฉาก

ก่อนที่จะเริ่มเข้าสู่เนื้อหา พี่อยากให้น้องๆได้รู้พื้นฐานเกี่ยวกับฟังก์ชันตรีโกณมิติเพื่อที่จะได้เข้าใจเนื้อหาในบทความนี้มากขึ้น

  • การวัดความยาวส่วนโค้ง
  • ค่าของฟังก์ชันไซน์และโคไซน์
  • ฟังก์ชันตรีโกณมิติอื่นๆ

หลังจากที่ไปทบทวนความรู้มาแล้วเรามาเริ่มเนื้อหาใหม่กันเลยค่ะ

หน่วยของมุม

1.) องศา (degree) คือหน่วยของมุมในระนาบ 2 มิติ โดยที่

1 มุมฉาก = 90°

1°            = 60′ (ลิปดา)

1′            = 60″ (ฟิลิปดา)

มุมฉากที่น้องๆคุ้นกัน ก็คือ สามเหลี่ยมมุมฉาก

2.) เรเดียน (radian) คือหน่วยวัดมุมบนระนาบ 2 มิติ

มุม 1 เรเดียน คือขนาดของมุมที่วัดจากจุดศูนย์กลางของวงกลมที่กางออกตามส่วนโค้ง ซึ่งความยาวส่วนโค้งมีความยาวเท่ากับรัศมีของวงกลมพอดี

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้น มุม θ = \frac{a}{r}

 

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้นถ้าเราหมุนรัศมีครบ 1 รอบ จะได้ว่า a=2\pi r นั่นคือ θ = 2\piเรเดียน

จากนั้นเรามาพิจารณามุมฉาก (90°) ซึ่ง a=\frac{2\pi r}{4}

ดังนั้น 90° = \frac{\pi}{2}    ⇒    180° = \pi

ตัวอย่างการเปลี่ยนหน่วยของมุม

  • 5\pi เรเดียน เปลี่ยนเป็นองศา

จาก \pi = 180° ดังนั้น 5\pi = 5(180) = 900°

  • \frac{4\pi}{3} เรเดียน เปลี่ยนเป็นองศา

จะได้  \frac{4\pi}{3} = \frac{4(180)}{3} = 240°

  • 780° เปลี่ยนเป็นเรเดียน

ใช้วิธีเทียบสัดส่วน คือ

180° = \pi

780° = \frac{780\pi }{180} = \frac{13\pi }{3}

  • -330° เปลี่ยนเป็นเรเดียน

จะได้ \frac{-330\pi }{180} = \frac{-11\pi }{6}

ฟังก์ชันตรีโกณมิติของมุม 180° ± A, 360±A และ (-A) เมื่อ 0 < A < 90°

sin(180° – A) = sinA                      cosec(180° – A) = cosecA

cos(180° – A) = -cosA                   sec(180° – A) = -secA

tan(180° – A) = -tanA                   cot(180° – A) = -cotA

————————————————————————————————

sin(180° + A) = -sinA                      cosec(180° + A) = -cosecA

cos(180° + A) = -cosA                   sec(180° + A) = -secA

tan(180° + A) = tanA                   cot(180° + A) = cotA

————————————————————————————————

sin(360° + A) = sinA                      cosec(360° + A) = cosecA

cos(360° + A) = cosA                   sec(360° + A) = secA

tan(360° + A) = tanA                   cot(360° + A) = cot

————————————————————————————————

sin(360° – A) = -sinA                      cosec(360° – A) = -cosecA

cos(360° – A) = cosA                      sec(360° – A) = secA

tan(360° – A) = -tanA                   cot(360° – A) = -cot
————————————————————————————————
sin(-A) = -sinA                             cosec(-A) = -cosecA

cos(-A) = cosA                             sec(-A) = secA

tan(-A) = -tanA                           cot(-A) = -cotA

ฟังก์ชันตรีโกณมิติของมุม ของรูปสามเหลี่ยมมุมฉาก

A, B และ C เป็นมุมของสามเหลี่ยม

ในรูปนี้จะพิจารณามุม A

a แทนความยาวด้านตรงข้ามมุม A ⇒ ข้าม

b แทนความยาวด้านประชิดมุม A ⇒ ชิด

c แทนความยาวด้านตรงข้ามมุมฉาก ⇒ ฉาก

จากรูปจะได้ว่า

sinA = ข้าม/ฉาก = \frac{a}{c}

cosA = ชิด/ฉาก = \frac{b}{c}

tanA = ข้าม/ชิด = \frac{a}{b}

 

ตัวอย่าง

ให้ cosθ = \inline \frac{-3}{5} และ \frac{\pi }{2} ≤ θ ≤ \pi

ขั้นแรกเราจะพิจารณาเงื่อนไขที่โจทย์ให้มา นั่นก็คือ \frac{\pi }{2} ≤ θ ≤ \pi

ซึ่งจากเงื่อนไขนี้สามารถบอกได้ว่าเรากำลังพิจารณาค่าของฟังก์ชันตรีโกณที่อยู่ใน ควอดรันต์ที่ 2

ดังนั้น sinθ, cosecθ มีค่าเป็นบวก tanθ, cotθ และ secθ มีค่าเป็นลบ

จาก cosθ = \inline \frac{-3}{5} = ชิด/ฉาก เราจะวาดรูปได้ดังนี้

หา a โดยใช้ทฤษฎีบทพีทาโกรัส

c² = a² + b²

25 = a² + 9

a² = 16

a = ±4

จาก a คือความยาว ดังนั้น a = 4

ดังนั้น sinθ = \inline \frac{4}{5}

tanθ = \inline -\frac{4}{3}

cotθ = \inline -\frac{3}{4}

secθ = \inline -\frac{5}{3}

cosecθ = \inline \frac{5}{4}

การหาขนาดของมุมจากรูปสามเหลี่ยมมุมฉาก

ถ้าเรามีรูปสามเหลี่ยมที่บอกความยาวด้านมา เราสามารถหามุมได้โดยใช้ข้อมูลเหล่านั้นช่วย

เช่น

1)

จากรูปจะเห็นว่าบอกความความยาวด้านชิดมุมA และด้านตรงข้ามมุมฉาก

นั่นคือ รู้ชิด รู้ฉาก  ดังนั้นเราจะหามุมจากฟังก์ชันcos

cosA = \inline \frac{\sqrt{3}}{\sqrt{6}} = \inline \frac{1}{\sqrt{2}} = \inline \frac{\sqrt{2}}{2}

ดังนั้น A = 45°

2)

จากรูป เรารู้ความยาวด้านชิดมุมA และด้านตรงข้ามมุมA

ดังนั้นจะหาโดยใช้ tanA = \inline \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{3}

ดังนั้น A = 60°

มุมอื่นๆที่ควรรู้

มุม A = 35 จะได้ sin35° = \inline \frac{3}{5} และ cos35° = \inline \frac{4}{5}

มุมA = 53 จะได้ sin53° = \inline \frac{4}{5} และ cos53° = \inline \frac{3}{5}

วิดีโอเพิ่มเติม

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Quantity words

การใช้ Quantity words

Hi guys! สวัสดีค่ะนักเรียนชั้นม.1 ทุกคนวันนี้เราจะไปเรียนรู้ “การใช้ Quantity words ” ในภาษาอังกฤษกันค่ะ Let’s go! ไปลุยกันโลด Quantity words คืออะไร “Quantity words” คือคำบอกปริมาณนั่นเอง เช่น much, many, few, a few, lots

คำสุภาพและคำผวน

คำสุภาพ คำผวน สองขั้วตรงข้ามในภาษาไทย

คำสุภาพ และคำผวน คำสุภาพและคำผวน คือสองเรื่องในภาษาไทยที่ต่างกันสุดขั้ว ทั้งวิธีใช้ ความหมาย และความสำคัญ บทเรียนภาษาไทยวันนี้เราจะพาน้อง ๆ ไปทำความรู้จักกับทั้งคำสุภาพ และคำผวนในภาษาไทย ว่าทำไมถึงต่างกันและสามารถใช้ในโอกาสใดได้บ้าง ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   ความหมายของคำสุภาพ     คำสุภาพ เป็นการเปลี่ยนแปลงการใช้คำศัพท์เดิมให้เปลี่ยนไปในทางดีขึ้น เพื่อให้ดูสุภาพมากกว่าเดิม ใช้เมื่อต้องการหลีกเลี่ยงเรียกคำที่ไม่น่าฟัง หรือใช้กับคนที่อาวุโสกว่าก็ได้ อาจเรียกอีกอย่างว่าเป็นคำราชาศัพท์

Like & Dislike ในการพูดถึงความชอบ และการให้ข้อมูลเกี่ยวกับตนเอง

สวัสดีน้องๆ ป. 5 ทุกคนนะครับผม วันนี้เราจะมาลองฝึกใช้ประโยคที่เอาไว้บอกความชอบของเรากัน พร้อมกับการให้ข้อมูลเกี่ยวกับตัวเองเบื้องต้นครับ ถ้าพร้อมแล้วไปลุยกันเลย

การเขียนคำอวยพร

การเขียนคำอวยพร เขียนอย่างไรให้เหมาะสมกับผู้รับ

  วัฒนธรรมเป็นส่วนหนึ่งของสังคม และภาษาก็เป็นส่วนหนึ่งของวัฒนธรรม คนเราทุกคนต่างต้องการในสิ่งดีงาม เมื่อถึงโอกาสสำคัญอย่างวันเกิด วันแต่งงาน วันขึ้นบ้านใหม่ จึงต้องการคำอวยพรที่สร้างกำลังใจ และเป็นสิริมงคลแก่ตัวเอง คำอวยพรจึงเป็นเหมือนสิ่งสะท้อนวัฒนธรรม ที่คนใช้สื่อสาร ถ่ายทอดเพื่อมอบสิ่งดี ๆ ให้แก่กัน บทเรียนในวันนี้ น้อง ๆ จะได้เรียนรู้เกี่ยวกับ การเขียนคำอวยพร เราไปดูพร้อมกันเลยค่ะว่าการเขียนประเภทนี้จะมีลักษณะและวิธีอย่างไรบ้าง   การเขียนคำอวยพร   ความหมายของคำอวยพร คำอวยพร

3 ขั้นตอนการเขียนโครงงานอย่างง่ายที่ไม่ว่าใครก็ทำได้

ในเมื่อมีการเขียนรายงานแล้วทำไมถึงยังต้องมีการเขียนโครงงาน? น้อง ๆ เคยสงสัยไหมคะว่า การเขียนโครงงาน นั้นไม่เหมือนกับรายงานทั่วไปอย่างไร มีองค์ประกอบและขั้นตอนการเขียนอย่างไร ถ้าอยากรู้แล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยนะคะ   โครงงานคืออะไร   โครงงานเป็นกิจกรรมที่เน้นกระบวนการโดยผู้เรียนจะเป็นผู้คิดค้น วางแผน ลงมือปฏิบัติตามแผนที่วางไว้ อาศัยเครื่องมือและวัสดุอุปกรณ์ในการปฏิบัติ เพื่อให้โครงงานสำเร็จภายใต้คำแนะนำ การกระตุ้นความคิด กระตุ้นการทำงานของครูผู้สอนหรือผู้เชี่ยวชาญ ตั้งแต่คิดสร้างโครงงาน ลงมือปฏิบัติ ไปจนถึงประเมินผล   ความสำคัญของโครงงาน    

E6 This, That, These, Those

This, That, These, Those

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนเรื่อง This, That, These, Those กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจ้า   เข้าสู่บทเรียน   ก่อนที่นักเรียนจะไปเรียนเรื่อง การใช้  This, That, These, Those ครูอยากจะให้ลองดูตัวอย่างของการใช้ This, That, These, Those (Determiners) และ This,

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1