ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

 ฟังก์ชันตรีโกณมิติของมุม

ฟังก์ชันตรีโกณมิติของมุม จะเกี่ยวข้องกับมุมที่มีหน่วยเป็นองศา (degree) และมุมที่มัหน่วยเป็นเรเดียน (radian)

ในบทความนี้จะกล่าวถึงมุมทั้งหน่วยองศาและเรเดียน มุมฉาก การเปลี่ยนหน่วยของมุม สมบัติของฟังก์ชันตรีโกณมิติ และสามเหลี่ยมมุมฉาก

ก่อนที่จะเริ่มเข้าสู่เนื้อหา พี่อยากให้น้องๆได้รู้พื้นฐานเกี่ยวกับฟังก์ชันตรีโกณมิติเพื่อที่จะได้เข้าใจเนื้อหาในบทความนี้มากขึ้น

  • การวัดความยาวส่วนโค้ง
  • ค่าของฟังก์ชันไซน์และโคไซน์
  • ฟังก์ชันตรีโกณมิติอื่นๆ

หลังจากที่ไปทบทวนความรู้มาแล้วเรามาเริ่มเนื้อหาใหม่กันเลยค่ะ

หน่วยของมุม

1.) องศา (degree) คือหน่วยของมุมในระนาบ 2 มิติ โดยที่

1 มุมฉาก = 90°

1°            = 60′ (ลิปดา)

1′            = 60″ (ฟิลิปดา)

มุมฉากที่น้องๆคุ้นกัน ก็คือ สามเหลี่ยมมุมฉาก

2.) เรเดียน (radian) คือหน่วยวัดมุมบนระนาบ 2 มิติ

มุม 1 เรเดียน คือขนาดของมุมที่วัดจากจุดศูนย์กลางของวงกลมที่กางออกตามส่วนโค้ง ซึ่งความยาวส่วนโค้งมีความยาวเท่ากับรัศมีของวงกลมพอดี

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้น มุม θ = \frac{a}{r}

 

ฟังก์ชันตรีโกณมิติของมุม

 

ดังนั้นถ้าเราหมุนรัศมีครบ 1 รอบ จะได้ว่า a=2\pi r นั่นคือ θ = 2\piเรเดียน

จากนั้นเรามาพิจารณามุมฉาก (90°) ซึ่ง a=\frac{2\pi r}{4}

ดังนั้น 90° = \frac{\pi}{2}    ⇒    180° = \pi

ตัวอย่างการเปลี่ยนหน่วยของมุม

  • 5\pi เรเดียน เปลี่ยนเป็นองศา

จาก \pi = 180° ดังนั้น 5\pi = 5(180) = 900°

  • \frac{4\pi}{3} เรเดียน เปลี่ยนเป็นองศา

จะได้  \frac{4\pi}{3} = \frac{4(180)}{3} = 240°

  • 780° เปลี่ยนเป็นเรเดียน

ใช้วิธีเทียบสัดส่วน คือ

180° = \pi

780° = \frac{780\pi }{180} = \frac{13\pi }{3}

  • -330° เปลี่ยนเป็นเรเดียน

จะได้ \frac{-330\pi }{180} = \frac{-11\pi }{6}

ฟังก์ชันตรีโกณมิติของมุม 180° ± A, 360±A และ (-A) เมื่อ 0 < A < 90°

sin(180° – A) = sinA                      cosec(180° – A) = cosecA

cos(180° – A) = -cosA                   sec(180° – A) = -secA

tan(180° – A) = -tanA                   cot(180° – A) = -cotA

————————————————————————————————

sin(180° + A) = -sinA                      cosec(180° + A) = -cosecA

cos(180° + A) = -cosA                   sec(180° + A) = -secA

tan(180° + A) = tanA                   cot(180° + A) = cotA

————————————————————————————————

sin(360° + A) = sinA                      cosec(360° + A) = cosecA

cos(360° + A) = cosA                   sec(360° + A) = secA

tan(360° + A) = tanA                   cot(360° + A) = cot

————————————————————————————————

sin(360° – A) = -sinA                      cosec(360° – A) = -cosecA

cos(360° – A) = cosA                      sec(360° – A) = secA

tan(360° – A) = -tanA                   cot(360° – A) = -cot
————————————————————————————————
sin(-A) = -sinA                             cosec(-A) = -cosecA

cos(-A) = cosA                             sec(-A) = secA

tan(-A) = -tanA                           cot(-A) = -cotA

ฟังก์ชันตรีโกณมิติของมุม ของรูปสามเหลี่ยมมุมฉาก

A, B และ C เป็นมุมของสามเหลี่ยม

ในรูปนี้จะพิจารณามุม A

a แทนความยาวด้านตรงข้ามมุม A ⇒ ข้าม

b แทนความยาวด้านประชิดมุม A ⇒ ชิด

c แทนความยาวด้านตรงข้ามมุมฉาก ⇒ ฉาก

จากรูปจะได้ว่า

sinA = ข้าม/ฉาก = \frac{a}{c}

cosA = ชิด/ฉาก = \frac{b}{c}

tanA = ข้าม/ชิด = \frac{a}{b}

 

ตัวอย่าง

ให้ cosθ = \inline \frac{-3}{5} และ \frac{\pi }{2} ≤ θ ≤ \pi

ขั้นแรกเราจะพิจารณาเงื่อนไขที่โจทย์ให้มา นั่นก็คือ \frac{\pi }{2} ≤ θ ≤ \pi

ซึ่งจากเงื่อนไขนี้สามารถบอกได้ว่าเรากำลังพิจารณาค่าของฟังก์ชันตรีโกณที่อยู่ใน ควอดรันต์ที่ 2

ดังนั้น sinθ, cosecθ มีค่าเป็นบวก tanθ, cotθ และ secθ มีค่าเป็นลบ

จาก cosθ = \inline \frac{-3}{5} = ชิด/ฉาก เราจะวาดรูปได้ดังนี้

หา a โดยใช้ทฤษฎีบทพีทาโกรัส

c² = a² + b²

25 = a² + 9

a² = 16

a = ±4

จาก a คือความยาว ดังนั้น a = 4

ดังนั้น sinθ = \inline \frac{4}{5}

tanθ = \inline -\frac{4}{3}

cotθ = \inline -\frac{3}{4}

secθ = \inline -\frac{5}{3}

cosecθ = \inline \frac{5}{4}

การหาขนาดของมุมจากรูปสามเหลี่ยมมุมฉาก

ถ้าเรามีรูปสามเหลี่ยมที่บอกความยาวด้านมา เราสามารถหามุมได้โดยใช้ข้อมูลเหล่านั้นช่วย

เช่น

1)

จากรูปจะเห็นว่าบอกความความยาวด้านชิดมุมA และด้านตรงข้ามมุมฉาก

นั่นคือ รู้ชิด รู้ฉาก  ดังนั้นเราจะหามุมจากฟังก์ชันcos

cosA = \inline \frac{\sqrt{3}}{\sqrt{6}} = \inline \frac{1}{\sqrt{2}} = \inline \frac{\sqrt{2}}{2}

ดังนั้น A = 45°

2)

จากรูป เรารู้ความยาวด้านชิดมุมA และด้านตรงข้ามมุมA

ดังนั้นจะหาโดยใช้ tanA = \inline \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{3}

ดังนั้น A = 60°

มุมอื่นๆที่ควรรู้

มุม A = 35 จะได้ sin35° = \inline \frac{3}{5} และ cos35° = \inline \frac{4}{5}

มุมA = 53 จะได้ sin53° = \inline \frac{4}{5} และ cos53° = \inline \frac{3}{5}

วิดีโอเพิ่มเติม

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ป.5 การใช้ V. to be กับคำนามเอกพจน์ และพหูพจน์

การใช้กริยา V. to be กับคำนามเอกพจน์ และพหูพจน์

สวัสดีค่ะนักเรียนที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้กริยา be กับคำนามเอกพจน์ และพหูพจน์ กันนะคะ พร้อมแล้วก็ไปลุยกันเลยจ้า Let’s go! รู้จักกับ V. to be   V. to be แปลว่า เป็น อยู่ คือ หลัง verb to

การตรวจสอบความสมเหตุสมผล

การตรวจสอบความสมเหตุสมผล

จากบทความที่ผ่านมาเราเรียนเรื่องการให้เหตุผลแบบนิรนัย บทความนี้เป็นเนื้อหาเรื่องการตรวจสอบความสมเหตุสมผลซึ่งมักจะออกสอบทั้งในโรงเรียนและ O-Net หลังจากน้องๆได้อ่านบทความนี้แล้วน้องๆจะทำข้อสอบได้แน่นอนค่ะ

ความสัมพันธ์ที่ “รู้จักฉัน รู้จักเธอ” ของเศษส่วนและทศนิยม

เศษส่วนและทศนิยมมีความสัมพันธ์กันคือสามารถเขียนเศษส่วนให้อยู่ในรูปของทศนิยมหรือเขียนทศนิยมให้อยู่ในรูปของเศษส่วนได้โดยค่าของเศษส่วน และทศนิยมนั้นจะมีค่าเท่ากัน บทความนี้จะอธิบายหลักการความสัมพันธ์ของเศษส่วนและทศนิยมพร้อมวิธีคิดที่เห็นภาพ ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้ คือการเปลี่ยนเศษส่วนให้เป็นทศนิยมและการเปลี่ยนทศนิยมให้เป็นเศษส่วนแล้วยังมีเทคนิคการสังเกตง่ายๆที่จะสามารถทำให้เราทำได้อย่างรวดเร็วและถูกต้องยิ่งขึ้น

nokAcademy Profile_Asking and telling time by

การบอกเวลาในภาษาอังกฤษ (Telling time in English)

Hi guys! สวัสดีค่ะนักเรียนชั้นม. 1 ที่น่ารักทุกคน วันนี้เราจะไปดูวีการ “บอกเวลาในภาษาอังกฤษ หรือ Telling time in English กันค่ะ” ไปลุยกันเลย   บทนำ   ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษานะคะ 

การอ่านบทร้อยแก้ว อ่านอย่างไรให้น่าฟัง

หลังจากที่เราได้เรียนรู้เรื่องการบทร้อยกรองไปแล้ว วันนี้เราจะมาพูดถึงบทร้อยแก้วกันบ้าง ซึ่งน้อง ๆ หลายคนคงจะรู้จักบทร้อยแก้วกันดีอยู่แล้ว เพราะเป็นสิ่งที่อยู่ในชีวิตประจำวัน แต่น้อง ๆ ทราบไหมคะว่า การอ่านบทร้อยแก้ว ก็มีวิธีอ่านที่ถูกต้องเหมือนกัน เพราะการที่เราอ่านไม่ถูกต้องนั้นก็อาจจะทำให้ไม่น่าฟัง น่าเบื่อ รวมไปถึงอาจทำให้ใจความที่ผู้แต่งต้องการจะสื่อสารคลาดเคลื่อนได้อีกด้วย ถ้าอยากรู้แล้วว่ามีหลักเกณฑ์และวิธีอ่านอย่างไร ไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ร้อยแก้วคืออะไร ?   บทข้อความทั่วๆ ไป ทั้งภาษาพูดและภาษาเขียน โดยต้องเขียนเป็นประโยค ข้อความติดต่อกัน

โคลงโสฬสไตรยางค์

โคลงโสฬสไตรยางค์ โคลงสุภาษิตผลงานพระราชนิพนธ์ในร.5

  โคลงโสฬสไตรยางค์ เป็นโคลงสุภาษิต ผลงานพระราชนิพนธ์ของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับวรรณคดีที่เปี่ยมไปด้วยคุณค่าและข้อคิดสอนใจมากมาย ถ้าอยากรู้แล้วว่ามีเนื้อหาอะไรและมีข้อคิดอย่างไรบ้าง เราก็ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   ประวัติความเป็นมา     โคลงโสฬสไตรยางค์ (พ.ศ. 2423) เป็นโคลงสุภาษิต บทพระราชนิพนธ์ในพระบาทสมเด็จเพราะจุลจอมเกล้าเจ้าอยู่หัว รัชกาลที่ 5 เดิมเป็นภาษาอังกฤษ จึงได้ทรงพระกรุณาโปรดเกล้าโปรดกระหม่อมให้กวีในพระราชสำนักแปลและประพันธ์โคลงเป็นภาษาไทย โดยพระองค์ได้ทรงตรวจแก้และทรงพระราชนิพนธ์โคลงบทนำด้วย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1