ทักษะและกระบวนการทางคณิตศาสตร์ (1)

Picture of phanuphong
phanuphong

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ

  1. คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ
  2. คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง

โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง ๆ จะได้เรียนสูตรทั้งหมด 4 สูตรในบทความนี้

ผลบวกของตัวเลขที่น่าสนใจ

สูตรที่  1)  1 + 2 + 3 + 4 + … + n = \frac{n(n+1)}{2}

โดยสูตรที่ 1 เป็นการบวกกันของตัวเลขที่เรียงกัน เเละเริ่มต้นจากเลข 1 ซึ่งในกรณีที่ตัวเลขเริ่มต้นไม่ได้เริ่มจากเลข 1

สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน = จำนวนพจน์(ปลาย + ต้น) 
.                                                                                           2
โดยจำนวนพจน์ = ปลาย – ต้น + 1

จะเห็นได้ว่าจากสูตรที่ 1 คือสูตรเดียวกันกับสูตรผลบวกของเลขหลายจำนวนที่เรียงกันซึ่งสูตรที่ 1 เริ่มต้นจากเลข 1 เเสดงว่า ต้น = 1, ปลาย = n, เเละจำนวนพจน์ = n เหมือนกันเพราะว่าเป็นการเรียงตัวกันตั้งเเต่ 1 ถึง n ดังนั้นสามารถนำ n มาเป็นจำนวนพจน์ได้

การเลือกใช้สูตรที่ 1 หรือสูตรผลบวกของเลขหลายจำนวนที่เรียงกัน ให้เลือกจากเลขเริ่มต้นจากโจทย์ถ้าเริ่มจากเลข 1 ให้ใช้สูตรที่ 1 ในการหาคำตอบ ถ้าโจทย์เริ่มจากเลขอื่นให้ใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน

สูตรที่ 2) 1 + 3 + 5 + 7 + … + (2n-1) = n^{2}
โดยสูตรที่ 2 เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1

สูตรที่ 3) 1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}
โดยสูตรที่ 3 เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1

สูตรที่ 4) 1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}
โดยสูตรที่ 4 เป็นการหาผลบวกของตัวเลขจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1


ตัวอย่างโจทย์ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ตัวอย่างที่ 1) จงหาผลบวกของ 1 + 2 + 3 + 4 + 5 +… + 71

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 1 ดังนั้นใช้สูตร 1

1 + 2 + 3 + 4 + 5 +… + 71  =  \frac{n(n+1)}{2}

.                                              =  \frac{71(71+1)}{2}

.                                              = \frac{71(72)}{2}

.                                              = \frac{5112}{2}

.                                              = 2556

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 2556

ตัวอย่างที่ 2) จงหาผลบวกของ 40 + 41 + 42 + 43 + … + 68

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 40 ดังนั้นใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน 

40 + 41 + 42 + 43 + … + 68 = (จำนวนพจน์(ปลาย + ต้น))/2

เริ่มจากการหาจำนวนพจน์ก่อน ซึ่งจำนวนพจน์ = ปลาย – ต้น + 1
.                                                                           = 68-40+1
.                                                                           = 29

40 + 41 + 42 + 43 + … + 68 = (29(68 + 40))/2
.                                                  = (29(108))/2
.                                                  = (3132)/2
.                                                  = 1566

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 1566

ตัวอย่างที่ 3) จงหาผลบวกของ 1 + 3 + 5 + 7 + … + 61 

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1 ดังนั้นใช้สูตร 2

1 + 3 + 5 + 7 + … + (2n-1) = n^{2}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 61
.                                                        2n    = 61 + 1
.                                                        2n    = 62
.                                                          n    = 62/2
.                                                          n    = 31

เมื่อ n = 31 เราสามารถหาผลบวกของชุดจำนวนนี้ได้ดังนี้

1 + 3 + 5 + 7 + … + 61 = 61^{2}

1 + 3 + 5 + 7 + … + 61 = 3721

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 3721

ตัวอย่างที่ 4) จงหาผลบวกของ 1^{2} + 2^{2} + 3^{2} + ... + 12^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 3

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{n(n+1)(2n+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(12+1)(2(12)+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(13)(25)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 2(13)(25)

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 650

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 650

ตัวอย่างที่ 5) จงหาผลบวกของ 1^{2} + 3^{2} + 5^{2} + ... + 15^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 4

1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 15
.                                                        2n    = 15 + 1
.                                                        2n    = 16
.                                                          n    = 16/2
.                                                          n    = 8

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{n(2n-1)(2n+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(2(15)-1)(2(15)+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(29)(31)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 5(29)(31)

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 4495

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 4495

หากน้อง ๆ สามารถหาผลบวกของตัวเลขที่น่าสนใจได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคตทั้งเรื่องของอนุกรมเเละผลบวกของอนุกรม น้อง ๆ สามารถศึกษา ทักษะเเละกระบวนการทางคณิตศาสตร์ เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ ทักษะเเละกระบวรการทางคณิตศาสตร์ (1)

คลิปวิดีโอนี้ได้รวบรวมวิธีหา ทักษะและกระบวนการทางคณิตศาสตร์  ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Suggesting Profile

สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สวัสดีค่ะนักเรียนชั้นม. 4 ที่น่ารักทุกคน วันนี้ครูจะพาไปตะลุย “สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ พร้อมทั้งเทคนิคการพูดตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า สำนวนการเสนอ   ในชีวิตประจำวันของเรานั้น ล้วนจะต้องเจอกลุ่มประโยคคำถามในเชิงชักชวน และการเสนอแนะที่ใช้เป็นรูปแบบคำถามนั้นถือเป็นการเสนอแนะชักชวนทางอ้อม ถ้าเทียบกับนิสัยคนไทยแล้ว ก็เพื่อแสดงถึงความเกรงใจ ไม่พูดมาตรงๆ เพื่อจุดประสงคืบางอย่าง ซึ่งเป็นนิสัยที่คนไทยส่วนใหญ่มีอยู่แล้ว ในภาษาอังกฤษการใช้ภาษาเหล่านี้จะทำให้การสนทนาดูเป็นธรรมชาติและคล่องมากขึ้น โดยที่บางครั้งผู้ถามนั้นหว่านล้อมผู้ฟังด้วยการ ชวนให้ทำ หรือแนะนำให้ทำนั่นเอง ประโยคคำถามที่ใช้มีดังนี้  

ม.3 สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สวัสดีค่ะนักเรียนชั้นม. 3 ที่น่ารักทุกคน วันนี้ครูจะพาไปตะลุย “สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ พร้อมทั้งเทคนิคการพูดตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า สำนวนการเสนอ   ในชีวิตประจำวันของเรานั้น ล้วนจะต้องเจอกลุ่มประโยคคำถามในเชิงชักชวน และการเสนอแนะที่ใช้เป็นรูปแบบคำถามนั้นถือเป็นการเสนอแนะชักชวนทางอ้อม ถ้าเทียบกับนิสัยคนไทยแล้ว ก็เพื่อแสดงถึงความเกรงใจ ไม่พูดมาตรงๆ เพื่อจุดประสงคืบางอย่าง ซึ่งเป็นนิสัยที่คนไทยส่วนใหญ่มีอยู่แล้ว ในภาษาอังกฤษการใช้ภาษาเหล่านี้จะทำให้การสนทนาดูเป็นธรรมชาติและคล่องมากขึ้น โดยที่บางครั้งผู้ถามนั้นหว่านล้อมผู้ฟังด้วยการ ชวนให้ทำ หรือแนะนำให้ทำนั่นเอง ประโยคคำถามที่ใช้มีดังนี้  

ตัวบ่งปริมาณ

ตัวบ่งปริมาณและค่าความจริงของตัวบ่งปริมาณ

ตัวบ่งปริมาณ ตัวบ่งปริมาณ คือ สัญลักษณ์หรือข้อความที่เมื่อเราเอาไปเติมใน “ประโยคเปิด” แล้วจะทำให้ประโยคนั้นกลายเป็นประพจน์ ประโยคเปิด คือประโยคบอกเล่าหรือปฏิเสธที่ติดค่าตัวแปรที่ยัง “ไม่รู้ว่าเป็นจริงหรือเท็จ” โดยตัวแปรนั้นเป็นสมาชิกของเอกภพสัมพัทธ์ (Universe : U) ประโยคเปิด ยังไม่ใช่ประพจน์ (แต่เกือบเป็นแล้ว) เพราะเรายังไม่รู้ว่าเป็นจริงหรือเท็จ เช่น  “x มากกว่า 3” จะเห็นว่าตัวแปร คือ x ซึ่งเราไม่รู้ว่า x

พระบรมราโชวาท จดหมายของร.5ที่เขียนถึงพระโอรส

พระบรมราโชวาท เป็นจดหมายร้อยแก้วที่พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวได้เขียนให้พระโอรสทั้ง 4 พระองค์ก่อนจะไปศึกษาต่างประเทศ เหตุใดเนื้อความในจดหมายถึงกลายเป็นวรรณคดีอันทรงคุณค่าให้คนรุ่นหลังได้ศึกษา บทเรียนในวันนี้จะพาไปเรียนรู้ประวัติความเป็นมาและเนื้อหาโดยรวมของเนื้อความเพื่อให้เข้าใจถึงคำสอนและข้อคิดจากพระบรมราโชวาทของพระมหากษัตริย์ในแง่มุมของพ่อสอนลูก จะเป็นอย่างไรไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ประวัติความเป็นมา     วรรณคดีเรื่องพระบรมราโชวาท เป็นคำสั่งสอนของรัชกาลที่ 5 พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวที่มีต่อพระราชโอรสทั้ง 4 พระองค์ที่กำลังจะเดินทางไปศึกษาต่อต่างประเทศ พระองค์จึงมีพระบรมราโชวาทเพื่อสั่งสอนและตักเตือนพระราชโอรส ซึ่งในการส่งไปศึกษาต่อในครั้งนี้ พระองค์ทรงเล็งเห็นว่า การศึกษาเป็นรากฐานของการพัฒนาประชาชนและประเทศชาติ    

can could

การตั้งคำถามโดยใช้ Can และ Could

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้วิธีการใช้กริยาช่วยคือ Can และ Could กันครับ ถ้าพร้อมแล้วเราลองไปดูกันเลย

การอ่านออกเสียงคำควบกล้ำ

การอ่านออกเสียงคำควบกล้ำ อ่านอย่างไรให้ถูกต้อง

ในปัจจุบัน ไม่ว่าจะชมสื่อต่าง ๆ หรือพูดคุยในชีวิตประจำวัน เราก็มักจะเจอคนที่อ่านออกเสียงคำควบกล้ำไม่ชัดอยู่บ่อยครั้ง โดยเฉพาะคำที่เป็น ร หรือ ล ทำให้การสื่อสารอาจผิดพลาดไปเลยก็ได้ ดังนั้น การอ่านออกเสียงคำควบกล้ำ ให้ถูกต้องจึงถือเป็นเรื่องที่สำคัญอย่างมาก บทเรียนในวันนี้ นอกจากน้อง ๆ จะได้เรียนรู้เกี่ยวกับคำควบกล้ำว่ามีอะไรบ้างแล้ว ก็ยังจะได้รู้วิธีอ่านออกเสียงอีกด้วย ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำควบกล้ำ คำควบกล้ำ (อักษรควบ) หมายถึง พยัญชนะสองตัวเขียนเรียงกันอยู่ต้นพยางค์และใช้สระเดียวกัน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1