ทักษะและกระบวนการทางคณิตศาสตร์ (1)

Picture of phanuphong
phanuphong

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ

  1. คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ
  2. คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง

โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง ๆ จะได้เรียนสูตรทั้งหมด 4 สูตรในบทความนี้

ผลบวกของตัวเลขที่น่าสนใจ

สูตรที่  1)  1 + 2 + 3 + 4 + … + n = \frac{n(n+1)}{2}

โดยสูตรที่ 1 เป็นการบวกกันของตัวเลขที่เรียงกัน เเละเริ่มต้นจากเลข 1 ซึ่งในกรณีที่ตัวเลขเริ่มต้นไม่ได้เริ่มจากเลข 1

สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน = จำนวนพจน์(ปลาย + ต้น) 
.                                                                                           2
โดยจำนวนพจน์ = ปลาย – ต้น + 1

จะเห็นได้ว่าจากสูตรที่ 1 คือสูตรเดียวกันกับสูตรผลบวกของเลขหลายจำนวนที่เรียงกันซึ่งสูตรที่ 1 เริ่มต้นจากเลข 1 เเสดงว่า ต้น = 1, ปลาย = n, เเละจำนวนพจน์ = n เหมือนกันเพราะว่าเป็นการเรียงตัวกันตั้งเเต่ 1 ถึง n ดังนั้นสามารถนำ n มาเป็นจำนวนพจน์ได้

การเลือกใช้สูตรที่ 1 หรือสูตรผลบวกของเลขหลายจำนวนที่เรียงกัน ให้เลือกจากเลขเริ่มต้นจากโจทย์ถ้าเริ่มจากเลข 1 ให้ใช้สูตรที่ 1 ในการหาคำตอบ ถ้าโจทย์เริ่มจากเลขอื่นให้ใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน

สูตรที่ 2) 1 + 3 + 5 + 7 + … + (2n-1) = n^{2}
โดยสูตรที่ 2 เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1

สูตรที่ 3) 1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}
โดยสูตรที่ 3 เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1

สูตรที่ 4) 1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}
โดยสูตรที่ 4 เป็นการหาผลบวกของตัวเลขจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1


ตัวอย่างโจทย์ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ตัวอย่างที่ 1) จงหาผลบวกของ 1 + 2 + 3 + 4 + 5 +… + 71

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 1 ดังนั้นใช้สูตร 1

1 + 2 + 3 + 4 + 5 +… + 71  =  \frac{n(n+1)}{2}

.                                              =  \frac{71(71+1)}{2}

.                                              = \frac{71(72)}{2}

.                                              = \frac{5112}{2}

.                                              = 2556

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 2556

ตัวอย่างที่ 2) จงหาผลบวกของ 40 + 41 + 42 + 43 + … + 68

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 40 ดังนั้นใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน 

40 + 41 + 42 + 43 + … + 68 = (จำนวนพจน์(ปลาย + ต้น))/2

เริ่มจากการหาจำนวนพจน์ก่อน ซึ่งจำนวนพจน์ = ปลาย – ต้น + 1
.                                                                           = 68-40+1
.                                                                           = 29

40 + 41 + 42 + 43 + … + 68 = (29(68 + 40))/2
.                                                  = (29(108))/2
.                                                  = (3132)/2
.                                                  = 1566

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 1566

ตัวอย่างที่ 3) จงหาผลบวกของ 1 + 3 + 5 + 7 + … + 61 

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1 ดังนั้นใช้สูตร 2

1 + 3 + 5 + 7 + … + (2n-1) = n^{2}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 61
.                                                        2n    = 61 + 1
.                                                        2n    = 62
.                                                          n    = 62/2
.                                                          n    = 31

เมื่อ n = 31 เราสามารถหาผลบวกของชุดจำนวนนี้ได้ดังนี้

1 + 3 + 5 + 7 + … + 61 = 61^{2}

1 + 3 + 5 + 7 + … + 61 = 3721

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 3721

ตัวอย่างที่ 4) จงหาผลบวกของ 1^{2} + 2^{2} + 3^{2} + ... + 12^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 3

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{n(n+1)(2n+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(12+1)(2(12)+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(13)(25)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 2(13)(25)

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 650

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 650

ตัวอย่างที่ 5) จงหาผลบวกของ 1^{2} + 3^{2} + 5^{2} + ... + 15^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 4

1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 15
.                                                        2n    = 15 + 1
.                                                        2n    = 16
.                                                          n    = 16/2
.                                                          n    = 8

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{n(2n-1)(2n+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(2(15)-1)(2(15)+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(29)(31)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 5(29)(31)

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 4495

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 4495

หากน้อง ๆ สามารถหาผลบวกของตัวเลขที่น่าสนใจได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคตทั้งเรื่องของอนุกรมเเละผลบวกของอนุกรม น้อง ๆ สามารถศึกษา ทักษะเเละกระบวนการทางคณิตศาสตร์ เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ ทักษะเเละกระบวรการทางคณิตศาสตร์ (1)

คลิปวิดีโอนี้ได้รวบรวมวิธีหา ทักษะและกระบวนการทางคณิตศาสตร์  ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติการคูณจำนวนจริง

สมบัติการคูณจำนวนจริง

จากบทความก่อนหน้านี้น้องๆได้เรียนเรื่องสมบัติการบวกจำนวนจริงไปแล้ว บทความนี้พี่ก็จะพูดถึงสมบัติการคูณจำนวนจริงซึ่งมีเนื้อหาคล้ายๆกันกับการบวก และมีเพิ่มสมบัติการแจกแจงเข้ามา เนื้อหาเหล่านี้ล้วนเป็นพื้นฐานสำคัญที่จะใช้ในการเรียนเนื้อหาบทต่อๆไป เมื่อน้องๆอ่านบทความนี้แล้วน้องๆจะเรียนเนื้อหาบทต่อๆไปได้ง่ายขึ้นแน่นอนค่ะ

ทริคการสืบค้นข้อมูลทางอินเทอร์เน็ตอย่างง่าย ๆ

ย้อนกลับไปเมื่อหลายสิบปีที่แล้วก่อนที่อินเทอร์เน็ตจะเข้ามามีบทบาทในชีวิตของทุกคนเหมือนอย่างทุกวันนี้ แหล่งการสืบค้นหลัก ๆ จะอยู่ที่ห้องสมุด แต่ในปัจจุบันเราสามารถเข้าถึงข้อมูลต่าง ๆ ได้ง่ายขึ้นเพียงคลิกปลายนิ้ว ข้อมูลที่ต้องการค้นหาก็มาปรากฏอยู่ตรงหน้าให้เลือกสรรมากมาย แต่เราจะมีวิธีการเลือกสืบค้นข้อมูลกันอย่างไร ถึงจะได้ข้อมูลที่ถูกต้องและครบถ้วนที่สุด บทเรียนในวันนี้ถือเป็นอีกหนึ่งเรื่องสำคัญที่จะช่วยให้การหาข้อมูลสำหรับการเรียนของน้อง ๆ นั้นง่ายขึ้น เราไปเรียนรู้เรื่อง การสืบค้นข้อมูลทางอินเทอร์เน็ต กันเลยค่ะ   การสืบค้นข้อมูลทางอินเทอร์เน็ต   เป็นการค้นคว้าหาความรู้โดยใช้สารสนเทศในลักษณะต่าง ๆ โดยมีเว็บไซต์ที่เป็นแหล่งเก็บรวบรวมภาพและข้อมูลต่าง ๆ    

คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ พูดอย่างไรให้ถูกต้อง

  คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ ถือเป็นเรื่องสำคัญ ที่น้อง ๆ หลายคนอาจจะต้องพบเจอถ้าหากว่านับถือศาสนาพุทธ เพราะว่าเราอาจมีโอกาสได้สนทนากับพระระหว่างทำบุญก็ได้ วันนี้เราจะมาเรียนรู้คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์กันนะคะว่าแตกต่างจากคำราชาศัพท์สำหรับราชวงศ์และสุภาพชนทั่วไปอย่างไร ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ ใช้อย่างไร     แม้คำว่าราชาศัพท์ จะสามารถแปลตรงตัวได้ว่าเป็นถ้อยคำที่ใช้กับพระมหากษัตริย์ แต่ในปัจจุบันนี้คำราชาศัพท์ยังครอบคลุมไปถึงพระบรมวงศานุวงศ์ พระภิกษุสงฆ์ และสุภาพชน หรือเรียกอีกนัยว่าคำสุภาพ สำหรับคำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์จะต่างกับราชวงศ์และสุภาพชน และยังขึ้นอยู่กับสมณศักดิ์ของพระสงฆ์อีกด้วย โดยสามารถเรียงลำดับได้ดังนี้

ตัวบ่งปริมาณ

ตัวบ่งปริมาณและค่าความจริงของตัวบ่งปริมาณ

ตัวบ่งปริมาณ ตัวบ่งปริมาณ คือ สัญลักษณ์หรือข้อความที่เมื่อเราเอาไปเติมใน “ประโยคเปิด” แล้วจะทำให้ประโยคนั้นกลายเป็นประพจน์ ประโยคเปิด คือประโยคบอกเล่าหรือปฏิเสธที่ติดค่าตัวแปรที่ยัง “ไม่รู้ว่าเป็นจริงหรือเท็จ” โดยตัวแปรนั้นเป็นสมาชิกของเอกภพสัมพัทธ์ (Universe : U) ประโยคเปิด ยังไม่ใช่ประพจน์ (แต่เกือบเป็นแล้ว) เพราะเรายังไม่รู้ว่าเป็นจริงหรือเท็จ เช่น  “x มากกว่า 3” จะเห็นว่าตัวแปร คือ x ซึ่งเราไม่รู้ว่า x

ทบทวนคำถาม V. to be, V. to do และ Wh- Questions กับคำศัพท์ในสวนสัตว์

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาไป ทบทวนคำถาม V. to be, V. to do และ Wh- Questions กับคำศัพท์ในสวนสัตว์ กันค่ะ พร้อมแล้วก็ไปลุยกันเลย Verb to be     กริยาช่วยกลุ่มนี้ที่สามารถขึ้นต้นประโยคคำถามได้ ได้แก่ is, am, are,

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1