ดีเทอร์มิแนนต์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ดีเทอร์มิแนนต์

ดีเทอร์มิแนนต์ (Determinant) คือ ค่าของตัวเลขที่สอดคล้องกับเมทริกซ์จัตุรัส ถ้า A เป็นเมทริกซ์จัตุรัส จะเขียนแทนดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ \inline \left | A \right |

โดยทั่วไปการหาค่าดีเทอร์มิแนนต์ที่เจอในข้อสอบจะไม่เกินเมทริกซ์ 3×3 เพราะถ้ามากกว่า 3 แล้ว จะเริ่มมีความยุ่งยาก

**ค่าของดีเทอร์มิแนนต์จะเป็นจำนวนจริงและมีเพียงค่าเดียวเท่านั้นที่จะสอดคล้องกับเมทริกซ์จัตุรัส เช่น เมทริกซ์ B ก็จะมีค่าดีเทอร์มิแนนต์เพียงค่าเดียวเท่านั้น**

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 2×2

ดีเทอร์มิแนนต์

หลักการจำคือ คูณลง ลบ คูณขึ้น

เช่น

ดีเทอร์มิแนนต์

 

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ขนาด 3×3

การหาค่าดีเทอร์มิแนนต์ของเมทริกซ์ 3×3 จะซซับซ้อนกว่า 2×2 นิดหน่อย แต่ยังใช้หลักการเดิมคือ คูณลง ลบ คูณขึ้น และสิ่งที่เพิ่มมาก็คือ การเพิ่มจำนวนหลักเข้าไปอีก 2 หลัก ซึ่งหลักที่เพิ่มนั้นก็คือค่าของ 2 หลักแรกนั่นเอง

ดีเทอร์มิแนนต์

 

ตัวอย่างเมทริกซ์ขนาด 3×3

ดีเทอร์มิแนนต์

 

สมบัติเกี่ยวกับ ดีเทอร์มิแนนต์

ให้ A, B เป็นเมทริกซ์ขนาด n×n

1.) \inline \mathrm{det(A)=det(A^t)}  โดยที่ \inline \mathrm{A^t} คือ เมทริกซ์สลับเปลี่ยน

2.) ถ้า สมาชิกแถวใดแถวหนึ่ง (หรือหลักใดหลักหนึ่ง) เป็น 0 ทุกตัว จะได้ว่า \inline \mathrm{det(A)=0}

เช่น

ดีเทอร์มิแนนต์

3.) ถ้า B คือเมทริกซ์ที่เกิดจากการสลับแถว (หรือหลัก) ของ A เพียงคู่เดียว จะได้ว่า \inline \mathrm{det(B)=-det(A)}

เช่น

ดีเทอร์มิแนนต์

4.) ถ้า B เกิดจากการคูณค่าคงตัว c ในสมาชิกแถวใดแถวหนึ่ง (หลักใดหลักหนึ่ง) ของ A จะได้ว่า \inline \mathrm{det(B)=cdet(A)}

เช่น

5.) \inline \mathrm{det(AB)=det(A)det(B)}

6.) \inline \mathrm{det(I_n)=1}  และ  \mathrm{det(\underbar{0})=0}

7.) \mathrm{det(A^n)=(det(A))^n}

เช่น

8.)  A เป็นเมทริกซ์เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)=0}

9.) A เป็ยเมทริกซ์ไม่เอกฐาน ก็ต่อเมื่อ \inline \mathrm{det(A)\neq 0}

10.) ถ้า A เป็นเมทริกซ์ไม่เอกฐาน แล้วจะได้ว่า \inline \mathrm{det(A^{-1})=\frac{1}{det(A)}}

11.) ถ้า c เป็นค่าคงตัว จะได้ว่า \mathrm{det(cA)=c^ndet(A)}   (n คือมิติของเมทริกซ์ A)

เช่น

ดีเทอร์มิแนนต์

12.) สามเหลี่ยมล่าง และสามเหลี่ยมบน 

ถ้า สมาชิกที่อยู่ใต้เส้นทะแยงมุมหลัก (หรือบนเส้นทะแยงมุมหลัก) เป็น 0 ทุกตัว จะได้ว่า ค่าดีเทอร์มิแนนต์จะเท่ากับ ผลคูณของสมาชิกเส้นทะแยงมุมหลัก

เช่น

ดีเทอร์มิแนนต์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สำนวนไทยที่เราควรรู้ และตัวอย่างการนำไปใช้ในชีวิตประจำวัน

น้อง ๆ เคยเป็นกันหรือเปล่าคะ เวลาที่อยากจะพูดอะไรสักอย่างแต่มันช่างยาวเหลือเกิน กว่าจะพูดออกมาหมดนอกจากคนฟังจะเบื่อแล้วยังอาจทำให้เขาไม่สนใจคำพูดของเราเลยก็เป็นไปได้ เพราะอย่างนั้นแหละค่ะในภาษาไทยของเราจึงต้องมีสิ่งที่เรียกว่าสำนวนขึ้นมาเพื่อใช้บอกเล่าเรื่องราวที่ถูกกลั่นกรองออกมาจนได้คำที่สละสลวย รวมใจความยาว ๆ ให้สั้นลง ทำให้เราไม่ต้องพูดอะไรให้ยืดยาวอีกต่อไป บทเรียนในวันนี้จะพาน้อง ๆ ไปทบทวนความรู้เรื่อง สำนวนไทย รวมถึงตัวอย่างสำนวนน่ารู้ในชีวิตประจำวันเพิ่มเติมด้วยค่ะ จะมีอะไรบ้างนั้น ไปดูกันเลย   ความหมายและลักษณะของ สำนวนไทย   สำนวน หมายถึง ถ้อยคำหรือสำนวนพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น

การออกเสียงพยัญชนะไทย-01

เสียงพยัญชนะไทย ออกเสียงอย่างไรให้ถูกต้อง

  เชื่อว่าน้อง ๆ หลายคงเคยสงสัยเรื่องการออกเสียงพยัญชนะไทยกันไม่มากก็น้อย เพราะพยัญชนะในภาษาไทยของเรานั้นมีด้วยกัน 44 ตัว แต่กลับมีหน่วยเสียงเพียงครึ่งเดียวเท่านั้น ทำไมการออกเสียงพยัญชนะไทยถึงไม่สามารถออกเสียงตามรูปอักษรทั้ง 44 รูปได้? ไหนจะพยัญชนะท้ายที่เขียนอีกอย่างแต่ดันออกเสียงไปอีกอย่าง บทเรียนในวันนี้จะช่วยไขข้อข้องใจให้กับน้อง ๆ หรือคนที่กำลังสับสนเรื่องการออกเสียงพยัญชนะไทย ให้กระจ่างและสามารถออกเสียงได้อย่างถูกต้อง ดังนั้น เราไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ     เสียงพยัญชนะไทย เสียงพยัญชนะ คือ

NokAcademy_ ม.4Gerund

Gerund

  สวัสดีค่ะนักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund   อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม

สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ สมบัติสมมาตร ถ้า a = b แล้ว b = a เมื่อ a และ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1