จุด : เรขาคณิตวิเคราะห์

จุด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จุด

จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น

จุด

 

ระยะทางระหว่างจุดสองจุด

เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร

โดยจะกำหนดให้ \inline P_{1}(x_{1},y_{1}) และ \inline P_{2}(x_{2},y_{2}) เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก

\inline \mathbf{{\color{DarkOrange} \left | P_{1}P_{2} \right | = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}}

ตัวอย่าง

จุด

ระยะห่างระหว่าง A(1,1) และ B(3,2) คือ               จุด

จุดกึ่งกลางของส่วนของเส้นตรง

ให้ A(x, y) เป็นจุดกึ่งกลางของเส้นตรงที่มีจุดปลายคือจุด \inline P_1(x_1,y_1) และ \inline P_2(x_2,y_2) จะได้ว่า \inline x=\frac{x_1+x_2}{2} และ \inline y=\frac{y_1+y_2}{2}

ตำแหน่งของจุดกึ่งกลางเป็นดังรูป

จุด

ตัวอย่าง

จุด

จุดแบ่งส่วนของเส้นตรงที่ไม่ใช่จุดกึ่งกลาง

กรณีที่จุด A(x, y) เป็นจุดแบ่งเส้นตรงที่ไม่ใช่จุดกึ่งกลาง เช่น

จะได้ว่า {\color{DarkOrange} x=\frac{nx_1+mx_2}{m+n}} และ {\color{DarkOrange} y=\frac{ny_1+my_2}{m+n}}

จุดตัดของเส้นมัธยฐาน

เส้นมัธยฐานคือเส้นตรงที่ลากจากจุดกึ่งกลางของเส้นตรงไปยังจุดยอดด้านตรงข้าม ดังรูป

จากที่น้องๆทราบกันแล้วว่าจุดตัดเส้นมัธยฐานอยู่ตรงไหน ต่อไปเราจะหาพิกัดของจุดตัดนั้นนั้น ซึ่งหาได้จาก

{\color{DarkOrange} x=\frac{x_1+x_2+x_3}{3}} และ {\color{DarkOrange} y=\frac{y_1+y_2+y_3}{3}}

 

ตัวอย่างเกี่ยวกับ จุด

 

1.) ถ้า A(x, y) และ B(3, 5) มีจุดกึ่งกลางคือ (4, -6) จงหาพิกัด A(x, y)

จุด

2.) ให้ A(-6, 4) B(3, 7) เป็นจุดปลายของส่วนของเส้นตรง จงหาพิกัดของ C บนส่วนของเส้นตรง \overline{AB} โดยที่ \overline{AC}:\overline{CB}=1:3

 

3.) หาความยาวของเส้นมัธยฐานของรูปสามเหลี่ยม ABC เมื่อกำหนดให้ พิกัด A, B และ C มีพิกัดเป็น (3, 2), (1, -3) และ (5, -3) ตามลำดับ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.5 M6 Gerund

Gerund

สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า  

Vtodo+Present Simple Tense

การใช้ V. to do ในรูปแบบของ Present Simple Tense

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ V. to do ในรูปแบบของ Present Simple Tense หากพร้อมแล้วก็ไปลุยกันโลดเด้อ Let’s go! V. to do คืออะไร   ปรกติแล้วคำว่า do นั้นแปลว่าทำ แต่เมื่ออยู่ในประโยคแล้ว V. to do

พญาช้างผู้เสียสละ

ทำความรู้จักกับพญาช้างผู้เสียสละนิทานธรรมะจรรโลงใจ

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคน กลับมาพบกันอีกครั้งในวิชาภาษาไทยแสนสนุก ซึ่งวันนี้เราจะพาทุกคนมาเปลี่ยนบรรยากาศกันด้วยการมาอ่านนิทานชาดกเรื่อง พญาช้างผู้เสียสละ เป็นเรื่องราวของพระพุทธเจ้าเมื่อครั้งที่ได้ลงมาเกิดเป็นพญาช้างรูปร่างงดงาม ต้องบอกว่าเรื่องราวในนิทานชาดกเรื่องนี้นอกจากจะทำให้น้อง ๆ สนุกไปกับเนื้อเรื่องแล้วก็ยังมอบคติสอนใจให้กับน้อง ๆ ได้ไม่น้อยเลย เพราะฉะนั้นถ้าทุกคนพร้อมแล้วไปเข้าสู่บทเรียนกันเลย ภูมิหลังตัวละคร สำหรับเรื่อง พญาช้างผู้เสียสละ อย่างที่ได้บอกไปว่าเป็นนิทานชาดกที่จัดเป็น 1 ใน 500 ชาติที่พระพุทธเจ้าเคยได้เสวยชาติ ซึ่งชาดกเรื่องนี้จะเล่าถึงพระพุทธเจ้าเมื่อครั้งที่ได้ลงมาเกิดเป็นพญาช้างสีลวะ ด้วยความที่พระองค์ทรงบำเพ็ญทานบารมีมานานจึงได้เกิดเป็นพญาช้างร่างใหญ่กำยำผิวขาวเผือกผ่อง มีงวงและงาสวยงามและมีบริวารรายล้อม

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น ระบบสมการเชิงเส้น คือระบบสมการที่มีดีกรีเป็นหนึ่ง ซึ่งก็คือเลขชี้กำลังของตัวแปรเป็นหนึ่งนั่นเอง ซึ่งในตอนมัธยมต้นน้องๆได้เรียนระบบสมการเชิงเส้น 2 ตัวแปรไปแล้ว ระบบสมการเชิงเส้นสองตัวแปร เช่น แล้วเราก็แก้สมการหาค่า x, y  (ซึ่งอาจจะมีคำตอบหรือไม่มีก็ได้) แต่ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับระบบสมการเชิงเส้น n ตัวแปร นั่นก็คือน้องๆจะต้องหาคำตอบของตัวแปร n ตัวตัว ซึ่งการหาคำตอบนั้นมีหลายวิธีไม่ว่าจะเป็นการใช้เมทริกซ์ (ซึ่งน้องๆจะได้เรียนในบทความถัดๆไป) หรือการแก้สมการธรรมดาและในข้อสอบส่วนใหญ่จะเน้นให้น้องๆหาคำตอบในระบบสมการเชิงเส้นที่ไม่เกิน 3 ตัวแปร เพราะถ้าเกินกว่านั้นอาจจะใช้เวลาในการหาคำตอบมาก

เลขยกกำลัง

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะมีความเกี่ยวข้องกับกรณฑ์ในบทความ จำนวนจริงในรูปกรณฑ์ จากที่เรารู้ว่า จำนวนตรรกยะคือจำนวนที่สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มได้ เช่น , , , 2 , 3 เป็นต้น ดังนั้นเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ ก็คือจำนวนจริงใดๆยกกำลังด้วยจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็ม เช่น , เป็นต้น โดยนิยามของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ คือ เมื่อ k และ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1