จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จำนวนเฉพาะและตัวประกอบเฉพาะ

บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ 

ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่ 2 หารไม่ลงตัว เรียกว่า จำนวนคี่

จากที่น้องๆ ได้ศึกษาความหมายของตัวประกอบเมื่อเข้าใจความหมายแล้ว ลำดับต่อไปให้หาจำนวนนับที่หาร 8, 12 และ 20 ลงตัว

จำนวนที่หาร  8     ได้ลงตัว   ได้แก่   1, 2, 4   และ 8

จำนวนที่หาร  12   ได้ลงตัว   ได้แก่   1, 2, 3, 4, 6 และ 12

จำนวนที่หาร  20   ได้ลงตัว   ได้แก่   1, 2, 4, 5, 10   และ 20

เราเรียก  1, 2, 4  และ 8 ว่า เป็นตัวประกอบของ 8

             1, 2, 3, 4, 6   และ 12  ว่า เป็นตัวประกอบของ 12

             1, 2, 4, 5, 10  และ 20  ว่า เป็นตัวประกอบของ 20

เมื่อรู้จักตัวประกอบแล้ว เราจะมาทำความรู้จักกับ จำนวนเฉพาะกันค่ะ 

จำนวนเฉพาะ

ตัวอย่างที่ 1  จงหาตัวประกอบทั้งหมดของจำนวนนับ 1 – 10

ตัวประกอบทั้งหมดของ  1   คือ   1

ตัวประกอบทั้งหมดของ  2   คือ   1, 2

ตัวประกอบทั้งหมดของ  3   คือ   1, 3

ตัวประกอบทั้งหมดของ  4   คือ   1, 2, 4

ตัวประกอบทั้งหมดของ  5   คือ   1, 5

ตัวประกอบทั้งหมดของ  6   คือ   1, 2, 3, 6

ตัวประกอบทั้งหมดของ  7   คือ   1, 7

ตัวประกอบทั้งหมดของ  8   คือ   1, 2, 4, 8

ตัวประกอบทั้งหมดของ  9   คือ   1, 3, 9

ตัวประกอบทั้งหมดของ  10 คือ   1, 2, 5, 10       

ดังนั้นจำนวนนับที่มีค่าอยู่ระหว่าง  1 – 10  ที่เป็นจำนวนเฉพาะได้แก่  2, 3, 5 และ   7

สรุปได้ว่า จำนวนเฉพาะ คือ จำนวนที่มากกว่า 1 ที่มีตัวประกอบสองตัว คือ 1 และตัวมันเอง 

ตัวอย่างที่ 2 จงพิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่ เพราะเหตุใด

       1)  2      2) 6      3) 11      4) 15      5)  19      6) 21      7) 31      8) 47      9) 87      10) 97

1)  2     เป็นจำนวนเฉพาะ        เพราะ  2      มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 2

2)  6     ไม่เป็นจำนวนเฉพาะ    เพราะ  6    มีตัวประกอบ   4 ตัว  ได้แก่   1 , 2, 3 และ 6

3)  11    เป็นจำนวนเฉพาะ       เพราะ  11    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 11

4)  15    ไม่เป็นจำนวนเฉพาะ  เพราะ  15    มีตัวประกอบ   4 ตัว  ได้แก่   1, 3, 5 และ 15

5)  19    เป็นจำนวนเฉพาะ       เพราะ  19    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 19

6)  21    ไม่เป็นจำนวนเฉพาะ   เพราะ  21  มีตัวประกอบ  4 ตัว  ได้แก่   1 , 3 ,7 และ 21

7)  31    เป็นจำนวนเฉพาะ        เพราะ  31   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 31

8)  47    เป็นจำนวนเฉพาะ         เพราะ  47   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 47

9)  87    เป็นจำนวนเฉพาะ        เพราะ  87   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 87

10) 97   เป็นจำนวนเฉพาะ        เพราะ  97   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 97

จากตัวอย่างข้างต้น ทำให้น้องๆ รู้จักจำนวนเฉพาะ ต่อไปเราจะมาทำความรู้จักกับ ตัวประกอบเฉพาะ กันค่ะ 

ตัวประกอบเฉพาะ

ตัวอย่างที่ 3  พิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่  เพราะเหตุใด

              1)  12                       2) 23                        3) 28                        4) 41

วิธีทำ         1)  12  ไม่เป็นจำนวนเฉพาะ  เพราะ  12  มีตัวประกอบ  6  ตัว ได้แก่  1, 2, 3, 6 และ 12               

2)  23  เป็นจำนวนเฉพาะ  เพราะ  23  มีตัวประกอบ  2  ตัว ได้แก่  1  และ  23   

3)  28  ไม่เป็นจำนวนเฉพาะ  เพราะ  28  มีตัวประกอบ  6  ตัว  ได้แก่   1, 2, 4, 7, 14 และ 28  

4)  31  เป็นจำนวนเฉพาะ  เพราะ  31  มีตัวประกอบ 2  ตัว ได้แก่  1  และ  31

ตัวอย่างที่ 4  จงหาตัวประกอบเฉพาะของจำนวนต่อไปนี้

              1)  8         2) 25         3) 54            

          1)   8  มีตัวประกอบทั้งหมด  ได้แก่   1, 2, 4, 8

   ตัวประกอบเฉพาะของ  8 คือ   2

          2)   25 มีตัวประกอบทั้งหมด  ได้แก่  1, 5 และ 25

     ตัวประกอบเฉพาะของ  25 คือ  5

          3)  54  มีตัวประกอบทั้งหมด  ได้แก่  1, 2, 3, 6, 9, 18, 27 และ 54       

    ตัวประกอบเฉพาะของ  54  คือ  2  และ  3                                               

สรุปได้ว่า ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ 

ตัวอย่างที่ 5 จงหาตัวประกอบเฉพาะทั้งหมดของจำนวนต่อไปนี้

1)  24         2) 35         3) 40         4) 75         5) 80   

     1) 24       มีตัวประกอบ 8 จำนวน   คือ  1, 2, 3, 4, 6, 8, 12  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  2 และ 3

     2) 35      มีตัวประกอบ 4 จำนวน   คือ  1, 57 และ 35

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  5 และ 7

     3) 40      มีตัวประกอบ 8  จำนวน  คือ  1, 2, 4, 5, 8, 10, 20  และ 40

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

     4) 75      มีตัวประกอบ 6 จำนวน  คือ  1, 3, 5, 15, 25 และ 75

มีตัวประกอบเฉพาะ  2 จำนวน คือ  3 และ 5

     5) 80     มีตัวประกอบ 10 จำนวน  คือ  1, 2, 4, 5, 8, 10, 16, 20, 40  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

สรุป

ตัวประกอบ ของจำนวนนับใด ๆ  หมายถึง  จำนวนนับทุกจำนวนที่นำมาหารจำนวนนับนั้นได้ลงตัว

จำนวนเฉพาะ คือ  จำนวนนับที่มากกว่า 1 และมีตัวประกอบเพียงสองตัวคือ 1 และตัวมันเอง

ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ

เมื่อน้องๆเรียนรู้เรื่อง จำนวนเฉพาะและตัวประกอบเฉพาะ จาก ตัวอย่าง หลายๆตัวอย่าง ทำให้รู้ความหมายอย่างชัดเจนว่า จำนวนเฉพาะคืออะไร  ตัวประกอบเฉพาะคืออะไร ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแยกตัวประกอบ ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแยกตัวประกอบได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ จำนวนเฉพาะและตัวประกอบเฉพาะ

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา จำนวนเฉพาะและตัวประกอบเฉพาะ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้และทำความเข้าใจเรื่องประโยคซับซ้อนอย่างง่าย

น้อง ๆ หลายคนคงจะรู้โครงสร้างของประโยคกันอยู่แล้ว คือจะมีประธาน กริยา กรรม เป็นส่วนประกอบ แต่ในชีวิตจริงเราไม่ได้พูดกันตามโครงสร้างเสมอไป เพราะจะมีส่วนขยายมาเพิ่มความมากขึ้นเพื่อให้ผู้พูดและผู้รับฟังสื่อสารกันได้อย่างเข้าใจมากขึ้นจนบางครั้งก็อาจทำให้ดูซับซ้อนจนไม่รู้ว่าเป็นประโยคแบบไหนและอะไรคือใจความสำคัญของประโยค บทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับเรื่อง ประโยคซับซ้อน ทั้งประโยคความเดียวซับซ้อน ประโยคความรวมซับซ้อน และประโยคความซ้อนซับซ้อน ประโยคแต่ละชนิดจะเป็นอย่างไร ไปเรียนรู้พร้อม ๆ กันเลยค่ะ ประโยคเอย จงซับซ้อนยิ่งขึ้น !   ประโยคซับซ้อน

การตั้งคําถามทางสถิติ

การตั้งคําถามทางสถิติ บทความนี้ได้รวบรวมความรู้เรื่อง การตั้งคําถามทางสถิติ ไว้อย่างละเอียด ก่อนอื่นน้องมาทำความเข้าใจกับความหมายของ “คำถามทางสถิติ” คำถามทางสถิติ  หมายถึง คำถามที่มีคำตอบหรือคาดว่าจะได้รับคำตอบมากกว่า 1 คำตอบ รวมถึงคำถามที่ต้องการคำตอบซึ่งได้มาจากการรวบรวมข้อมูลพื้นฐานบางอย่างแล้วนำมาจำแนก  คำนวณ หรือวิเคราะห์เพื่อใช้ตอบคำถามนั้น คำถามทางสถิติจะต้องประกอบด้วยองค์ประกอบสำคัญ 3 ส่วน ได้แก่ ระบุสิ่งที่ต้องการศึกษาได้ มีกลุ่มบุคคลหรือสิ่งที่จะเก็บรวบรวมข้อมูลที่หลากหลาย สามารถคาดการณ์ได้ว่าคำตอบที่จะเกิดขึ้นมีความแตกต่างกัน ตัวอย่างคำถามทางสถิติ คำถามต่อไปนี้เป็นคำถามทางสถิติ อัตราส่วนที่เหมาะสมในการผสมสีทาบ้าน แต่ยี่ห้อควรเป็นอย่างไร

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ

ฟังก์ชันประกอบ ฟังก์ชันประกอบ คือฟังก์ชันที่เกิดจากการหาค่าฟังก์ชันที่ส่งจากเซต A ไปเซต C โดยที่ f คือฟังก์ชันที่ส่งจาก A ไปยัง B และ g เป็นฟังก์ชันที่ส่งจาก B ไปยัง C เราเรียกฟังก์ชันที่ส่งจาก A ไป C นี้ว่า gof  จากรูป

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

บทนมัสการมาตาปิตุคุณ

บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ บทอาขยานที่ควรค่าแก่การจำ

จนถึงตอนนี้น้อง ๆ คงได้เรียนวรรณคดีกันมามากมายหลายเรื่อง แต่ละเรื่องก็อาจจะมีการใช้ลักษณะคำประพันธ์ที่ต่างกันออกไป หรือซ้ำกันบ้าง บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ ก็เป็นหนึ่งในวรรณคดีไทยที่อยู่ในแบบเรียนของน้อง ๆ แต่ความพิเศษคือลักษณะคำประพันธ์ที่น้อง ๆ อาจจะไม่เคยได้ยินมาก่อนอย่าง อินทรวิเชียร์ฉันท์ 11 จะเป็นอย่างไรบ้าง ถ้าพร้อมแล้วไปเรียนรู้วรรณคดีเรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของบทนมัสการมาตาปิตุคุณ และอาจาริยคุณ   บทนมัสการมาตาปิตุคุณ และอาจาริยคุณ เป็นบทร้อยกรองขนาดสั้น มีเนื้อหาแสดงคุณของบิดามารดาและครูอาจารย์ ประพันธ์ขึ้นโดย

M5 Past Passive

Passive Voice ในอดีต

  Hi guys! สวัสดีค่ะนักเรียนชั้นม.5 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   ความหมาย Past หมายถึง อดีต ส่วน Passive มาจาก Passive voice หมายถึง ประโยคที่ประธานถูกกระทำ รวมแล้วหมายถึงการใช้ Passive

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1