จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จำนวนเฉพาะและตัวประกอบเฉพาะ

บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ 

ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่ 2 หารไม่ลงตัว เรียกว่า จำนวนคี่

จากที่น้องๆ ได้ศึกษาความหมายของตัวประกอบเมื่อเข้าใจความหมายแล้ว ลำดับต่อไปให้หาจำนวนนับที่หาร 8, 12 และ 20 ลงตัว

จำนวนที่หาร  8     ได้ลงตัว   ได้แก่   1, 2, 4   และ 8

จำนวนที่หาร  12   ได้ลงตัว   ได้แก่   1, 2, 3, 4, 6 และ 12

จำนวนที่หาร  20   ได้ลงตัว   ได้แก่   1, 2, 4, 5, 10   และ 20

เราเรียก  1, 2, 4  และ 8 ว่า เป็นตัวประกอบของ 8

             1, 2, 3, 4, 6   และ 12  ว่า เป็นตัวประกอบของ 12

             1, 2, 4, 5, 10  และ 20  ว่า เป็นตัวประกอบของ 20

เมื่อรู้จักตัวประกอบแล้ว เราจะมาทำความรู้จักกับ จำนวนเฉพาะกันค่ะ 

จำนวนเฉพาะ

ตัวอย่างที่ 1  จงหาตัวประกอบทั้งหมดของจำนวนนับ 1 – 10

ตัวประกอบทั้งหมดของ  1   คือ   1

ตัวประกอบทั้งหมดของ  2   คือ   1, 2

ตัวประกอบทั้งหมดของ  3   คือ   1, 3

ตัวประกอบทั้งหมดของ  4   คือ   1, 2, 4

ตัวประกอบทั้งหมดของ  5   คือ   1, 5

ตัวประกอบทั้งหมดของ  6   คือ   1, 2, 3, 6

ตัวประกอบทั้งหมดของ  7   คือ   1, 7

ตัวประกอบทั้งหมดของ  8   คือ   1, 2, 4, 8

ตัวประกอบทั้งหมดของ  9   คือ   1, 3, 9

ตัวประกอบทั้งหมดของ  10 คือ   1, 2, 5, 10       

ดังนั้นจำนวนนับที่มีค่าอยู่ระหว่าง  1 – 10  ที่เป็นจำนวนเฉพาะได้แก่  2, 3, 5 และ   7

สรุปได้ว่า จำนวนเฉพาะ คือ จำนวนที่มากกว่า 1 ที่มีตัวประกอบสองตัว คือ 1 และตัวมันเอง 

ตัวอย่างที่ 2 จงพิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่ เพราะเหตุใด

       1)  2      2) 6      3) 11      4) 15      5)  19      6) 21      7) 31      8) 47      9) 87      10) 97

1)  2     เป็นจำนวนเฉพาะ        เพราะ  2      มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 2

2)  6     ไม่เป็นจำนวนเฉพาะ    เพราะ  6    มีตัวประกอบ   4 ตัว  ได้แก่   1 , 2, 3 และ 6

3)  11    เป็นจำนวนเฉพาะ       เพราะ  11    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 11

4)  15    ไม่เป็นจำนวนเฉพาะ  เพราะ  15    มีตัวประกอบ   4 ตัว  ได้แก่   1, 3, 5 และ 15

5)  19    เป็นจำนวนเฉพาะ       เพราะ  19    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 19

6)  21    ไม่เป็นจำนวนเฉพาะ   เพราะ  21  มีตัวประกอบ  4 ตัว  ได้แก่   1 , 3 ,7 และ 21

7)  31    เป็นจำนวนเฉพาะ        เพราะ  31   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 31

8)  47    เป็นจำนวนเฉพาะ         เพราะ  47   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 47

9)  87    เป็นจำนวนเฉพาะ        เพราะ  87   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 87

10) 97   เป็นจำนวนเฉพาะ        เพราะ  97   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 97

จากตัวอย่างข้างต้น ทำให้น้องๆ รู้จักจำนวนเฉพาะ ต่อไปเราจะมาทำความรู้จักกับ ตัวประกอบเฉพาะ กันค่ะ 

ตัวประกอบเฉพาะ

ตัวอย่างที่ 3  พิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่  เพราะเหตุใด

              1)  12                       2) 23                        3) 28                        4) 41

วิธีทำ         1)  12  ไม่เป็นจำนวนเฉพาะ  เพราะ  12  มีตัวประกอบ  6  ตัว ได้แก่  1, 2, 3, 6 และ 12               

2)  23  เป็นจำนวนเฉพาะ  เพราะ  23  มีตัวประกอบ  2  ตัว ได้แก่  1  และ  23   

3)  28  ไม่เป็นจำนวนเฉพาะ  เพราะ  28  มีตัวประกอบ  6  ตัว  ได้แก่   1, 2, 4, 7, 14 และ 28  

4)  31  เป็นจำนวนเฉพาะ  เพราะ  31  มีตัวประกอบ 2  ตัว ได้แก่  1  และ  31

ตัวอย่างที่ 4  จงหาตัวประกอบเฉพาะของจำนวนต่อไปนี้

              1)  8         2) 25         3) 54            

          1)   8  มีตัวประกอบทั้งหมด  ได้แก่   1, 2, 4, 8

   ตัวประกอบเฉพาะของ  8 คือ   2

          2)   25 มีตัวประกอบทั้งหมด  ได้แก่  1, 5 และ 25

     ตัวประกอบเฉพาะของ  25 คือ  5

          3)  54  มีตัวประกอบทั้งหมด  ได้แก่  1, 2, 3, 6, 9, 18, 27 และ 54       

    ตัวประกอบเฉพาะของ  54  คือ  2  และ  3                                               

สรุปได้ว่า ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ 

ตัวอย่างที่ 5 จงหาตัวประกอบเฉพาะทั้งหมดของจำนวนต่อไปนี้

1)  24         2) 35         3) 40         4) 75         5) 80   

     1) 24       มีตัวประกอบ 8 จำนวน   คือ  1, 2, 3, 4, 6, 8, 12  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  2 และ 3

     2) 35      มีตัวประกอบ 4 จำนวน   คือ  1, 57 และ 35

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  5 และ 7

     3) 40      มีตัวประกอบ 8  จำนวน  คือ  1, 2, 4, 5, 8, 10, 20  และ 40

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

     4) 75      มีตัวประกอบ 6 จำนวน  คือ  1, 3, 5, 15, 25 และ 75

มีตัวประกอบเฉพาะ  2 จำนวน คือ  3 และ 5

     5) 80     มีตัวประกอบ 10 จำนวน  คือ  1, 2, 4, 5, 8, 10, 16, 20, 40  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

สรุป

ตัวประกอบ ของจำนวนนับใด ๆ  หมายถึง  จำนวนนับทุกจำนวนที่นำมาหารจำนวนนับนั้นได้ลงตัว

จำนวนเฉพาะ คือ  จำนวนนับที่มากกว่า 1 และมีตัวประกอบเพียงสองตัวคือ 1 และตัวมันเอง

ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ

เมื่อน้องๆเรียนรู้เรื่อง จำนวนเฉพาะและตัวประกอบเฉพาะ จาก ตัวอย่าง หลายๆตัวอย่าง ทำให้รู้ความหมายอย่างชัดเจนว่า จำนวนเฉพาะคืออะไร  ตัวประกอบเฉพาะคืออะไร ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแยกตัวประกอบ ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแยกตัวประกอบได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ จำนวนเฉพาะและตัวประกอบเฉพาะ

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา จำนวนเฉพาะและตัวประกอบเฉพาะ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การบวกและการลบเอกนาม

การบวกและการลบเอกนาม บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5 เอกนาม เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก ค่าคงตัว คือ ตัวเลข ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y เอกนาม ประกอบด้วย 2

01NokAcademy_Question Tag Profile

เรื่อง Tag Question (1)

สวัสดีค่ะนักเรียนชั้นม.4 ที่น่ารักทุกคนวันนี้เราจะไปเรียนรู้ในหัวข้อ “เรื่อง Tag Question “ พร้อมแล้วก็ไปลุยกันเลยจร้า รู้จักกับ Question Tag (Tag Question หรือ Tail Question)   Question Tag ในบางครั้งเรียกว่า Tag Question หรือ Tail Question ก็ได้จร้า 

NokAcademy_Definite & Indefinite Articles M1

Definite & Indefinite Articles

  Hi guys! สวัสดีค่ะนักเรียนชั้น ม.1 ที่น่ารักทุกคนวันนี้ครูได้สรุปเรื่อง  Articles: a/an/the พร้อมเทคนิคการนำไปใช้ มาฝากกันค่ะ หากพร้อมแล้วก็ไปลุยกันเลย   Articles คืออะไร   Articles เป็นคำคุณศัพท์อย่างหนึ่ง การเรียน เรื่อง Articles นี้ที่มีหน้าที่หลักคือ ใช้นำหน้าคำนาม เราต้องทำความเข้าใจควบคู่ไปกับเรื่องนามนับได้ ( Countable

โคลงอิศปปกรณำ

โคลงอิศปปกรณำ วรรณคดีร้อยแก้วที่แปลมาจากนิทานตะวันตก

ในบทเรียนก่อนหน้า น้อง ๆ ได้เรียนรู้เรื่องโคลงโสฬสไตรยางค์กับโคลงนฤทุมนาการกันไปแล้ว แต่โคลงสุภาษิตที่น้อง ๆ ชั้นมัธยมศึกษาปีที่ 2 จะได้เรียนไม่ได้หมดแค่นั้นนะคะ เพราะยังมีอีกหนึ่งโคลงสุภาษิตที่สำคัญไม่แพ้กันเลยคือ โคลงอิศปปกรณำ นั่นเองค่ะ โคลงสุภาษิตที่ชื่อดูอ่านยากเรื่องนี้จะมีที่มาอย่างไร สอนเรื่องอะไรเราบ้าง มีเนื้อหาอย่างไร ให้ข้อคิดแบบไหน ไปเรียนรู้พร้อมกันเลยค่ะ   ความหมายของ โคลงอิศปปกรณำ     โคลงอิศปปกรณำ อ่านว่า โคลง-อิด-สะ-ปะ-ปะ-กะ-ระ-นำ

ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.)

             ตัวหารร่วมมาก (ห.ร.ม.) ตัวหารร่วมมาก (ห.ร.ม.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น  เป็นการหาตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น ในบทความนี้ได้รวบรวมวิธี การหา ห.ร.ม. ไว้ทั้งหมด 3 วิธี น้องๆอาจคุ้นชินกับ การหา ห.ร.ม. โดยวิธีตั้งหาร แต่น้องๆทราบหรือไม่ว่าวิธีการหา ห.ร.ม. มีวิธีการดังต่อไปนี้ การหา ห.ร.ม. โดยการหาผลคูณร่วม การหา ห.ร.ม.

การทดลองสุ่มและเหตุการณ์

บทความนี้ได้รวบรวมความรู้เรื่อง การทดลองสุ่มและเหตุการณ์ ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ และอธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง การทดลองสุ่มและเหตุการณ์ น้องๆสามารถทบทวน ความน่าจะเป็น ได้ที่  ⇒⇒ ความน่าจะเป็น ⇐⇐ การทดลองสุ่ม การทดลองสุ่ม  คือ การทดลองซึ่งทราบว่าผลลัพธ์ที่จะเกิดขึ้นอาจจะเป็นอะไรได้บ้าง  แต่ไม่สามารถบอกได้อย่างถูกต้องแน่นอนว่าในแต่ละครั้งที่ทำการทดลอง  ผลที่เกิดขึ้นจากการทดลองจะเป็นอะไรในบรรดาผลลัพธ์ที่อาจเป็นไปได้เหล่านั้น  เช่น การโยนเหรียญซึ่งมีผลลัพธ์ที่จะเกิดขึ้นได้ 2 แบบ คือ หัวหรือก้อย เมื่อโยนเหรียญ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1