จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จำนวนเฉพาะและตัวประกอบเฉพาะ

บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ 

ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่ 2 หารไม่ลงตัว เรียกว่า จำนวนคี่

จากที่น้องๆ ได้ศึกษาความหมายของตัวประกอบเมื่อเข้าใจความหมายแล้ว ลำดับต่อไปให้หาจำนวนนับที่หาร 8, 12 และ 20 ลงตัว

จำนวนที่หาร  8     ได้ลงตัว   ได้แก่   1, 2, 4   และ 8

จำนวนที่หาร  12   ได้ลงตัว   ได้แก่   1, 2, 3, 4, 6 และ 12

จำนวนที่หาร  20   ได้ลงตัว   ได้แก่   1, 2, 4, 5, 10   และ 20

เราเรียก  1, 2, 4  และ 8 ว่า เป็นตัวประกอบของ 8

             1, 2, 3, 4, 6   และ 12  ว่า เป็นตัวประกอบของ 12

             1, 2, 4, 5, 10  และ 20  ว่า เป็นตัวประกอบของ 20

เมื่อรู้จักตัวประกอบแล้ว เราจะมาทำความรู้จักกับ จำนวนเฉพาะกันค่ะ 

จำนวนเฉพาะ

ตัวอย่างที่ 1  จงหาตัวประกอบทั้งหมดของจำนวนนับ 1 – 10

ตัวประกอบทั้งหมดของ  1   คือ   1

ตัวประกอบทั้งหมดของ  2   คือ   1, 2

ตัวประกอบทั้งหมดของ  3   คือ   1, 3

ตัวประกอบทั้งหมดของ  4   คือ   1, 2, 4

ตัวประกอบทั้งหมดของ  5   คือ   1, 5

ตัวประกอบทั้งหมดของ  6   คือ   1, 2, 3, 6

ตัวประกอบทั้งหมดของ  7   คือ   1, 7

ตัวประกอบทั้งหมดของ  8   คือ   1, 2, 4, 8

ตัวประกอบทั้งหมดของ  9   คือ   1, 3, 9

ตัวประกอบทั้งหมดของ  10 คือ   1, 2, 5, 10       

ดังนั้นจำนวนนับที่มีค่าอยู่ระหว่าง  1 – 10  ที่เป็นจำนวนเฉพาะได้แก่  2, 3, 5 และ   7

สรุปได้ว่า จำนวนเฉพาะ คือ จำนวนที่มากกว่า 1 ที่มีตัวประกอบสองตัว คือ 1 และตัวมันเอง 

ตัวอย่างที่ 2 จงพิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่ เพราะเหตุใด

       1)  2      2) 6      3) 11      4) 15      5)  19      6) 21      7) 31      8) 47      9) 87      10) 97

1)  2     เป็นจำนวนเฉพาะ        เพราะ  2      มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 2

2)  6     ไม่เป็นจำนวนเฉพาะ    เพราะ  6    มีตัวประกอบ   4 ตัว  ได้แก่   1 , 2, 3 และ 6

3)  11    เป็นจำนวนเฉพาะ       เพราะ  11    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 11

4)  15    ไม่เป็นจำนวนเฉพาะ  เพราะ  15    มีตัวประกอบ   4 ตัว  ได้แก่   1, 3, 5 และ 15

5)  19    เป็นจำนวนเฉพาะ       เพราะ  19    มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 19

6)  21    ไม่เป็นจำนวนเฉพาะ   เพราะ  21  มีตัวประกอบ  4 ตัว  ได้แก่   1 , 3 ,7 และ 21

7)  31    เป็นจำนวนเฉพาะ        เพราะ  31   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 31

8)  47    เป็นจำนวนเฉพาะ         เพราะ  47   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 47

9)  87    เป็นจำนวนเฉพาะ        เพราะ  87   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 87

10) 97   เป็นจำนวนเฉพาะ        เพราะ  97   มีตัวประกอบ   2 ตัว  ได้แก่   1 และ 97

จากตัวอย่างข้างต้น ทำให้น้องๆ รู้จักจำนวนเฉพาะ ต่อไปเราจะมาทำความรู้จักกับ ตัวประกอบเฉพาะ กันค่ะ 

ตัวประกอบเฉพาะ

ตัวอย่างที่ 3  พิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่  เพราะเหตุใด

              1)  12                       2) 23                        3) 28                        4) 41

วิธีทำ         1)  12  ไม่เป็นจำนวนเฉพาะ  เพราะ  12  มีตัวประกอบ  6  ตัว ได้แก่  1, 2, 3, 6 และ 12               

2)  23  เป็นจำนวนเฉพาะ  เพราะ  23  มีตัวประกอบ  2  ตัว ได้แก่  1  และ  23   

3)  28  ไม่เป็นจำนวนเฉพาะ  เพราะ  28  มีตัวประกอบ  6  ตัว  ได้แก่   1, 2, 4, 7, 14 และ 28  

4)  31  เป็นจำนวนเฉพาะ  เพราะ  31  มีตัวประกอบ 2  ตัว ได้แก่  1  และ  31

ตัวอย่างที่ 4  จงหาตัวประกอบเฉพาะของจำนวนต่อไปนี้

              1)  8         2) 25         3) 54            

          1)   8  มีตัวประกอบทั้งหมด  ได้แก่   1, 2, 4, 8

   ตัวประกอบเฉพาะของ  8 คือ   2

          2)   25 มีตัวประกอบทั้งหมด  ได้แก่  1, 5 และ 25

     ตัวประกอบเฉพาะของ  25 คือ  5

          3)  54  มีตัวประกอบทั้งหมด  ได้แก่  1, 2, 3, 6, 9, 18, 27 และ 54       

    ตัวประกอบเฉพาะของ  54  คือ  2  และ  3                                               

สรุปได้ว่า ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ 

ตัวอย่างที่ 5 จงหาตัวประกอบเฉพาะทั้งหมดของจำนวนต่อไปนี้

1)  24         2) 35         3) 40         4) 75         5) 80   

     1) 24       มีตัวประกอบ 8 จำนวน   คือ  1, 2, 3, 4, 6, 8, 12  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  2 และ 3

     2) 35      มีตัวประกอบ 4 จำนวน   คือ  1, 57 และ 35

มีตัวประกอบเฉพาะ  2 จำนวน   คือ  5 และ 7

     3) 40      มีตัวประกอบ 8  จำนวน  คือ  1, 2, 4, 5, 8, 10, 20  และ 40

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

     4) 75      มีตัวประกอบ 6 จำนวน  คือ  1, 3, 5, 15, 25 และ 75

มีตัวประกอบเฉพาะ  2 จำนวน คือ  3 และ 5

     5) 80     มีตัวประกอบ 10 จำนวน  คือ  1, 2, 4, 5, 8, 10, 16, 20, 40  และ 24

มีตัวประกอบเฉพาะ  2 จำนวน คือ  2 และ 5

สรุป

ตัวประกอบ ของจำนวนนับใด ๆ  หมายถึง  จำนวนนับทุกจำนวนที่นำมาหารจำนวนนับนั้นได้ลงตัว

จำนวนเฉพาะ คือ  จำนวนนับที่มากกว่า 1 และมีตัวประกอบเพียงสองตัวคือ 1 และตัวมันเอง

ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะ

เมื่อน้องๆเรียนรู้เรื่อง จำนวนเฉพาะและตัวประกอบเฉพาะ จาก ตัวอย่าง หลายๆตัวอย่าง ทำให้รู้ความหมายอย่างชัดเจนว่า จำนวนเฉพาะคืออะไร  ตัวประกอบเฉพาะคืออะไร ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแยกตัวประกอบ ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแยกตัวประกอบได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ จำนวนเฉพาะและตัวประกอบเฉพาะ

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา จำนวนเฉพาะและตัวประกอบเฉพาะ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ค่าสัมบูรณ์

ค่าสัมบูรณ์

ค่าสัมบูรณ์ ค่าสัมบูรณ์  หรือ Absolute คือค่าของระยะทางจากศูนย์ไปยังจุดที่เราสนใจ เช่น ระยะทางจากจุด 0 ถึง -5 มีระยะห่างเท่ากับ 5 เนื่องจากค่าสัมบูรณ์เอาไว้บอกระยะห่าง ดังนั้นค่าสัมบูรณ์จะมีค่าเป็นบวกหรือศูนย์เท่านั้น ไม่สามารถเป็นลบได้ นิยามของค่าสัมบูรณ์ ให้ a เป็นจำนวนจริงใดๆ จะได้ว่า และ   น้องๆอาจจะงงๆใช่ไหมคะ ลองมาดูตัวอย่างสักนิดนึงดีกว่าค่ะ เช่น เพราะ

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

Direct Object

Direct and Indirect Objects

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Direct และ Indirect Objects กันครับว่าคืออะไร ถ้าพร้อมแล้วไปดูกันเลย

การบวกและการลบเอกนาม

การบวกและการลบเอกนาม บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5 เอกนาม เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก ค่าคงตัว คือ ตัวเลข ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y เอกนาม ประกอบด้วย 2

NokAcademy_ม6 Relative Clause

ทบทวนเรื่อง Relative clause + เทคนิค Error Identification

สวัสดีค่ะนักเรียนม. 6 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อมากขึ้น พร้อมข้อสอบ Error

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1