จำนวนสมาชิกของเซตจำกัด

จำนวนสมาชิกของเซตจำกัด เป็นเรื่องที่สามารถเอาไปใช้ในชีวิตประจำวันได้จริง และสิ่งที่น้องๆจะได้หลังจากอ่านบทความนี้คือ น้องๆจะสามารถทำโจทย์ปัญหาเกี่ยวกับจำนวนสมาชิกของเซตจำกัดได้ และอาจจะเอาไปประยุกต์ใช้ในชีวิตประจำวันได้ด้วย

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะใช้เนื้อหาเรื่องการดำเนินการของเซตด้วยเล็กน้อย ก่อนอื่นเรามารู้จักกับ สัญลักษณ์ จำนวนของสมาชิกก่อนนะคะ

ให้A เป็นเซตจำกัด เราจะใช้ n(A) แทนจำนวนสมาชิกของเซต A

เช่น A = {a,b,c,d} จะได้ n(A) = 4

B = {5,6,7,8,9,10} จะได้ n(B) = 6

จำนวนสมาชิกของเซตจำกัดสองเซต


กรณีที่ 1 ถ้า A  และ B เป็นเซตที่ไม่มีสมาชิกร่วมกัน

จะได้ว่า n(A∪B) = n(A)+n(B)

เช่น ให้ A = {1,2,3,4,5}, B = {6,7,8,9,10} จะได้ n(A) = 5, n(B) = 5

พิจารณา A∪B = {1,2,3,4,5,6,7,8,9,10} จะได้ n(A∪B) = 10

พิจารณา n(A)+n(B) = 5+5 = 10

ดังนั้นจะได้ว่า ถ้า A และ B ไม่มีสมาชิกร่วมกัน จะได้ n(A∪B) = n(A)+n(B)

กรณีที่ 2 ถ้า A และ B มีสมาชิกร่วมกัน

จะได้ว่า n(A∪B) = n(A)+n(B)-n(A∩B)

เช่น ให้ A ={1,2,3,4,5}, B = {4,5,6,7,8} จะได้ n(A) = 5 , n(B) = 5

พิจารณา A∪B = {1,2,3,4,5,5,6,7,8} จะได้ n(A∪B) = 8

พิจาณรา A∩B = {4,5} จะได้ n(A∩B) = 2

พิจารณา n(A)+n(B) = 5+5 = 10

พิจารณา n(A)+n(B)-n(A∩B) = 5+5-2 = 8

จะเห็นกว่า n(A∪B) ≠ n(A)+n(B) แต่ n(A∪B) = n(A)+n(B)-n(A∩B)

ดังนั้น ถ้า A,B มีสมาชิกร่วมกัน จะได้ว่า n(A∪B) = n(A)+n(B)-n(A∩B)

กรณีที่ 3 ถ้า A และ B เป็นเซตจำกัด จะได้ว่า n(A-B) = n(A) – n(A∩B)

จำนวนสมาชิกของเซตจำกัดสามเซต

ให้ A = {3,4,5,6} , B = {4,5,6,7}, C = {4,5,9}

ถ้าให้ A และ B เป็นเซตจำกัด

จะได้ว่า n(A-B-C) = n(A)-n(A∩B)-n(A∩C)+n(A∩B∩C)

สรุปสูตรการหาจำนวนสมาชิกของเซตจำกัด

ถ้า A, B และ C เป็นเซตจำกัด

1.) n(A∪B) = n(A)+n(B)-n(A∩B)

2.) n(A-B) = n(A) – n(A∩B)

3.) n(A∪B∪C) = n(A)+n(B)+n(C)-n(A∩B)-n(A∩C)-n(B∩C)+n(A∩B∩C)

4.) n(A-B-C) = n(A)-n(A∩B)-n(A∩C)+n(A∩B∩C)

 

ตัวอย่าง

1.) ถ้า A และ B มีจำนวนสมาชิกเท่ากัน A∪B มีสมาชิก 15 ตัว และ A∩B มีสมาชิก 5 ตัว จงหาจำนวนสมาชิกของ A-B และ B-A

วิธีทำ จากโจทย์ n(A∪B) = 15 และ n(A∩B) = 5

 จากสูตร n(A∪B) = n(A)+n(B)-n(A∩B)

จะได้ว่า 15 = n(A)+n(B)-5

บวก 5 เข้าทั้งสองข้างของสมการ จะได้

 20 = n(A)+n(B) 

จากที่เรารู้ว่า A และ B มีจำนวนสมาชิกเท่ากัน ทำให้ได้ว่า 

n(A) = n(B) ดังนั้น เราจะแทน n(A) = n(B) ในสมการ 20 = n(A)+n(B) 

จะได้ว่า 20 = n(A)+n(A)

  20 = 2n(A)

หารด้วย 2 ทั้งสมการ จะได้

n(A) = 10 ทำให้ได้ว่า n(B) = 10

แต่โจทย์อยากได้ n(A-B) และ n(B-A) 

จาก n(A-B) = n(A) – n(A∩B)

จะได้ว่า n(A-B) = 10-5 = 5

และ n(B-A) = n(B)-n(A∩B) = 10-5 = 5

ตอบ จำนวนสมาชิกของ A-B และ B-A เท่ากับ 5 

เราสามารถหาคำตอบโดยการใช้แผนภาพได้ ดังนี้

2.) จากผลสำรวจความชอบเกี่ยวกับวิชาคณิตศาสตร์ ภาษาไทย และอังกฤษของนักเรียนชั้นมัธยมศึกษาปีที่ 4 ทั้งหมด ผลเป็นดังนี้

ไม่ชอบคณิตศาสตร์ 70 คน

ไม่ชอบภาษาไทย 90 คน

ไม่ชอบอังกฤษ 40 คน

ไม่ชอบคณิตศาสตร์และไม่ชอบภาษาไทย 40 คน

ไม่ชอบคณิตศาสตร์และอังกฤษ 20 คน

ไม่ชอบภาษาไทยและอังกฤษ 15 คน

ไม่ชอบทั้งสามวิชา 10 คน

ชอบทั้งสามวิชาวิชา 0 คน

อยากทราบว่า มีนักเรียนชั้นมัธยมศึกษาปีที่ 4 ทั้งหมดกี่คน

วิธีทำ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

บทพากย์เอราวัณ

ศึกษาตัวบทที่น่าสนใจในเรื่องบทพากย์เอราวัณ

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคน กลับเข้าสู่เนื้อหาภาษาไทยสนุก ๆ อีกแล้ว สำหรับเรื่องที่เราจะมาเรียนรู้กันวันนี้ เป็นบทเรียนที่ต่อจากครั้งที่แล้วเรื่องความเป็นมาของวรรณคดีอย่างบทพากย์เอราวัณ ซึ่งครั้งนี้เราจะมาศึกษาตัวบทที่น่าสนใจในเรื่องนี้กัน ถ้าน้อง ๆ คนไหนพร้อมแล้วก็เตรียมตัวเข้าสู่เนื้อหากันได้เลย ศึกษาตัวบทที่น่าสนใจ คำศัพท์ กายิน         หมายถึง    กาย, ร่างกาย อมรินทร์   

นิราศภูเขาทอง ประวัติความเป็นมาของวรรณคดีที่แต่งโดยสุนทรภู่

นิราศภูเขาทอง   เชื่อว่าน้อง ๆ หลายคนคงจะเคยได้ยินเรื่องนิราศภูเขาทองผ่านหูกันมาบ้างไม่มากก็น้อย แต่น้อง ๆ ทราบหรือเปล่าคะว่านิราศภูเขาทองคืออะไร และมีที่มาอย่างไร ก่อนอื่นมาดูความหมายของนิราศกันก่อนนะคะ นิราศ คือวรรณคดีที่แต่งขึ้นเพื่อเล่าถึงการเดินจากที่หนึ่งไปอีกที่หนึ่ง โดยระหว่างการเดินทาง กวีก็จะนำสิ่งต่าง ๆ ที่ได้พบเห็น ไม่ว่าจะเป็นธรรมชาติ วิวทิวทัศน์หรือความเป็นอยู่ของผู้คนมาพรรณนา   หลังจากเข้าใจความหมายของนิราศแล้วก็ไปเริ่มเรียนรู้ประวัติความเป็นมาและเรื่องย่อของนิราศภูเขาทอง หนึ่งในกลอนนิราศที่ได้รับการยกย่องว่าแต่งดีที่สุดของสุนทรภู่กันเลยค่ะ   ประวัติความเป็นมา   สุนทรภู่แต่งนิราศภูเขาทองขึ้นมาในสมัยรัชสมัยพระบาทสมเด็จพระนั่งเกล้าเจ้าอยู่เจ้าหัว

การสร้างตารางค่าความจริง

บทความนี้เป็นเนื้อหาเกี่ยวกับการสร้างตารางค่าความจริงของประพจน์ เป็นเนื้อหาที่ไม่ยากมากหลังจากน้องๆได้อ่านบทความนี้แล้ว น้องๆจะสามารถสร้างตารางค่าความจริงได้ สามารถบอกได้ว่าประพจน์แต่ละประพจน์เป็นจริงได้กี่กรณีและเป็นเท็จได้กี่กรณี และจะทำให้น้องเรียนเนื้อหาเรื่องต่อไปได้ง่ายยิ่งขึ้น

ศึกษา นิทานเวตาล เรื่องที่10 และคุณค่าที่ซ่อนอยู่ในเรื่อง

​ นิทานเวตาล เป็นนิทานเรื่องเล่าที่แฝงไปด้วยคุณค่าและคติธรรมมากมาย หากแต่เต็มไปด้วยคุณค่า สำหรับฉบับแปลไทยของกรมหมื่นพิทยาลงกรณ์มีด้วยกัน 10 เรื่อง เรื่องที่อยู่ในแบบเรียนภาษาไทย คือเรื่องสุดท้าย ดังนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับตัวบทเด่น ๆ ที่น่าสนใจในนิทานเรื่องนี้เพื่อถอดความหมายและศึกษาคุณค่าทั้งด้านวรรณศิลป์ ด้านเนื้อหา และข้อคิดที่ได้จากเรื่อง ถ้าพร้อมแล้วไปเรียนรู้เรื่องนี้ด้วยเลยค่ะ   ตัวบทเด่นใน นิทานเวตาล เรื่องที่10   บทที่ 1  

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์ การบวก ลบ และคูณเมทริกซ์ เราจะนำสมาชิกของเมทริกซ์แต่ละเมทริกซ์มาบวก ลบ คูณกัน ซึ่งการดำเนินการเหล่านี้มีสมบัติและข้อยกเว้นต่างกันไป เช่น การบวกต้องเอาสมาชิกตำแหน่งเดียวกันมาบวกกัน เป็นต้น ต่อไปเราจะมาดูวิธีการบวก ลบ และคูณเมทริกซ์กันค่ะ การบวกเมทริกซ์ เมทริกซ์ที่จะนำมาบวกกันได้นั้น ต้องมีมิติเท่ากัน และการบวกจะนำสมาชิกตำแหน่งเดียวกันมาบวกกัน เช่น 1.)  2.)    การลบเมทริกซ์ การลบเมทริกซ์จะคล้ายๆกับการบวกเมทริกซ์เลย

ทบทวนคำถาม V. to be, V. to do และ Wh- Questions กับคำศัพท์ในสวนสัตว์

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาไป ทบทวนคำถาม V. to be, V. to do และ Wh- Questions กับคำศัพท์ในสวนสัตว์ กันค่ะ พร้อมแล้วก็ไปลุยกันเลย Verb to be     กริยาช่วยกลุ่มนี้ที่สามารถขึ้นต้นประโยคคำถามได้ ได้แก่ is, am, are,

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1