จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จำนวนจริงในรูปกรณฑ์

จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย \sqrt[n]{x} อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x

เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ a^{n} = x

เช่น

2 เป็นรากที่ 2 ของ 4 เพราะ 2²  = 4 นั่นคือ \sqrt{4} = 2  (รากที่สองของ 4 คือ 2 )

-2 เป็นรากที่ 2 ของ 4 เพราะ (-2)² = 4 นั่นคือ \sqrt{4} = -2 (รากที่สองของ 4 คือ -2)

ดังนั้น จะได้ว่า รากที่สองของ 4 คือ ±2 หรือเขียนอีกอย่างคือ \sqrt{4} = \pm 2 นั่นเอง

 

**รากที่ 2 เรานิยมใช้ \sqrt{x} แต่ถ้าเป็นรากที่ n เมื่อ n มากกว่า 2 เราจะใช้ \sqrt[n]{x} **

เช่น รากที่ 3 ของ x เขียนได้ดังนี้ \sqrt[3]{x}

สมบัติของ จำนวนจริงในรูปกรณฑ์

ให้ k, m, n เป็นจำนวนเต็มบวกที่มากกว่าหรือเท่ากับ 2

1.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

2.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

3.)  จำนวนจริงในรูปกรณฑ์  ; y ≠ 0

เช่น  จำนวนจริงในรูปกรณฑ์

 

4.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

5.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

**ถ้า n เป็นจำนวนเต็มบวกที่เป็นเลขคู่ ตัวที่อยู่ใน ราก หรือ √‾ ต้องเป็นจำนวนจริงที่ไม่เป็นลบ

แต่ถ้า n เป็นจำนวนเต็มบวกที่เป็นเลขคี่ ตัวที่อยู่ในราก จะเป็นจำนวนจริงใดๆ**

 

จำนวนจริงในรูปเลขยกกำลัง

จำนวนจริงในรูปเลขยกกำลัง จะเขียนอยู่ในรูป xª เมื่อ x เป็นจำนวนจริงใดๆ และ a เป็นจำนวนเต็มบวก

xª = x⋅x⋅x⋅…⋅x (a ครั้ง)ฃ

x เป็นเลขฐาน

a เป็นเลขชี้กำลัง

เช่น 5³  : 5 เป็นเลขฐาน และ 3 เป็นเลขชี้กำลัง เป็นต้น

สมบัติของเลขยกกำลัง

ให้ x, y เป็นจำนวนจริงใดๆ m, n เป็นจำนวนเต็มบวก

1.)  จำนวนจริงในรูปกรณฑ์  (เลขฐานเหมือนกัน เมื่อคูณกันสามารถนำเลขชี้กำลังมาบวกกันได้)

เช่น  2^5+2^7=2^{5+7}=2^{12}

 

2.)  (xy)^a = x^ay^a

เช่น  (xy)^2=x^2y^2

 

3.)  (x^m)^n = x^{mn}

เช่น  (x^2)^3=x^{2\times 3}=x^6

 

4.)  \frac{x^m}{x^n} = x^{m-n}

เช่น  \frac{x^5}{x^3}=x^{5-3}=x^2

 

5.) x^{m}=x^{n} ก็ต่อเมื่อ m = n

เช่น  2^{x} = 2^{4}  ดังนั้น  x = 4

 

ความสัมพันธ์ระหว่างจำนวนจริงที่มีเลขชี้กำลังกับจำนวนจริงในรูปกรณฑ์

 

ให้ m, n เป็นจำนวนเต็มบวก โดยที่ n มากกว่าหรือเท่ากับ 2 และให้ x เป็นจำนวนจริงที่ไม่เป็นลบ

จะได้ว่า

1.)  \sqrt[n]{x}=x^\frac{1}{n}

2.)  จำนวนจริงในรูปกรณฑ์

3.)   x^{\frac{m}{n}} =(x^m)^\frac{1}{n}=\sqrt[n]{x^m}

จากข้อ 2 และ 3 จะได้ว่า จำนวนจริงในรูปกรณฑ์

การหารากที่สองของจำนวนที่อยู่ในรูป x\pm 2\sqrt{y}

ให้ a, b เป็นจำนวนจริงบวกที่ a + b = x และ ab = y จะได้ว่า

1.) รากที่สองของ x+2\sqrt{y}  คือ  \pm (\sqrt{a}+\sqrt{b}) นั่นคือ \sqrt{x+2\sqrt{y}} = \pm (\sqrt{a} +\sqrt{b})

2.) รากที่สองของ x-2\sqrt{y}  คือ \pm (\sqrt{a}-\sqrt{b}) นั่นคือ \sqrt{x-2\sqrt{y}} = \pm (\sqrt{a} -\sqrt{b})

 

ตัวอย่างโจทย์เกี่ยวกับ จำนวนจริงในรูปกรณฑ์

 

1.) จงหาค่าของ \sqrt{12}+\sqrt{27}

จำนวนจริงในรูปกรณฑ์

2.) จงหาค่าของ \frac{2^{-3}+3^{-4}}{9^{-2}+8^{-1}}

จำนวนจริงในรูปกรณฑ์

3.) จงหารากที่สองของ 13+\sqrt{88}

การหารากที่สอง

4.) หาค่า x ที่ทำให้ (\sqrt{\frac{8}{125}})^{^4}=(\frac{16}{625})^{\frac{1}{x}}

จำนวนจริงในรูปเลขยกกำลัง

 

วีดิโอที่เกี่ยวข้องกับ จำนวนจริงในรูปกรณฑ์ และจำนวนจริงในรูปเลขยกกำลัง

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Present Perfect

Present Perfect ในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 4 ทุกคนนะครับ วันนี้เราจะมาพูดถึงเรื่อง Present Perfect ในภาษาอังกฤษ จะเป็นอย่างไรลองไปดูกันเลยดีกว่าครับ

การคูณเศษส่วนและจํานวนคละ

การคูณเศษส่วนและจํานวนคละ

บทความนี้จะพาน้อง ๆมารู้จักกับการคูณเศษส่วนและจำนวนคละ รวมถึงเทคนิคการคูณเศษส่วนและจำนวนคละที่ถูกต้องและรวดเร็ว หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือหลักการคูณเศษส่วนและจำนวนคละประเภทต่าง ๆ การตัดทอนเศษส่วนจำนวนคละและตัวอย่างการคูณเศษส่วนจำนวนคละที่เข้าใจง่ายและเห็นภาพ สามารถนำไปใช้ได้จริงในห้องเรียน

ตัวอย่างโจทย์ปัญหา + – × ÷ เศษส่วนและจำนวนคละ

หัวใจสำคัญของการทำโจทย์ปัญหาก็คือการวิเคราะห์ประโยคที่เป็นตัวหนังสือออกมาเป็นสัญลักษณ์ทางคณิตศาสตร์หรือเรียกสั้นๆว่า “การตีโจทย์”ถ้าเราวิเคราะห์ถูกต้องเราก็สามารถแสดงวิธีคิดได้ออกมาอย่างถูกต้องคำตอบที่ได้ก็จะถูกต้องตามมาด้วย ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้คือการฝึกวิเคราะห์โจทย์ปัญหาและการแสดงวิธีทำ รับรองว่าถ้าอ่านบทความนี้แล้วนำไปใช้จะได้คำตอบที่ถูกทุกข้ออย่างแน่นอน

การหมุน

การแปลงทางเรขาคณิตโดยการหมุน ( Rotation ) เป็นการแปลงที่จุดทุกจุดของรูปต้นแบบเคลื่อนที่ไปเป็นมุมเดียวกันรอบจุดตรึงอยู่กับที่ ที่กำหนดหรือจุดหมุน การหมุนจะหมุนทวนเข็มนาฬิกาหรือตามเข็มนาฬิกา

เรียนรู้และทำความเข้าใจเรื่องประโยคซับซ้อนอย่างง่าย

น้อง ๆ หลายคนคงจะรู้โครงสร้างของประโยคกันอยู่แล้ว คือจะมีประธาน กริยา กรรม เป็นส่วนประกอบ แต่ในชีวิตจริงเราไม่ได้พูดกันตามโครงสร้างเสมอไป เพราะจะมีส่วนขยายมาเพิ่มความมากขึ้นเพื่อให้ผู้พูดและผู้รับฟังสื่อสารกันได้อย่างเข้าใจมากขึ้นจนบางครั้งก็อาจทำให้ดูซับซ้อนจนไม่รู้ว่าเป็นประโยคแบบไหนและอะไรคือใจความสำคัญของประโยค บทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับเรื่อง ประโยคซับซ้อน ทั้งประโยคความเดียวซับซ้อน ประโยคความรวมซับซ้อน และประโยคความซ้อนซับซ้อน ประโยคแต่ละชนิดจะเป็นอย่างไร ไปเรียนรู้พร้อม ๆ กันเลยค่ะ ประโยคเอย จงซับซ้อนยิ่งขึ้น !   ประโยคซับซ้อน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1