จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จำนวนจริงในรูปกรณฑ์

จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย \sqrt[n]{x} อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x

เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ a^{n} = x

เช่น

2 เป็นรากที่ 2 ของ 4 เพราะ 2²  = 4 นั่นคือ \sqrt{4} = 2  (รากที่สองของ 4 คือ 2 )

-2 เป็นรากที่ 2 ของ 4 เพราะ (-2)² = 4 นั่นคือ \sqrt{4} = -2 (รากที่สองของ 4 คือ -2)

ดังนั้น จะได้ว่า รากที่สองของ 4 คือ ±2 หรือเขียนอีกอย่างคือ \sqrt{4} = \pm 2 นั่นเอง

 

**รากที่ 2 เรานิยมใช้ \sqrt{x} แต่ถ้าเป็นรากที่ n เมื่อ n มากกว่า 2 เราจะใช้ \sqrt[n]{x} **

เช่น รากที่ 3 ของ x เขียนได้ดังนี้ \sqrt[3]{x}

สมบัติของ จำนวนจริงในรูปกรณฑ์

ให้ k, m, n เป็นจำนวนเต็มบวกที่มากกว่าหรือเท่ากับ 2

1.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

2.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

3.)  จำนวนจริงในรูปกรณฑ์  ; y ≠ 0

เช่น  จำนวนจริงในรูปกรณฑ์

 

4.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

5.)  จำนวนจริงในรูปกรณฑ์

เช่น  จำนวนจริงในรูปกรณฑ์

 

**ถ้า n เป็นจำนวนเต็มบวกที่เป็นเลขคู่ ตัวที่อยู่ใน ราก หรือ √‾ ต้องเป็นจำนวนจริงที่ไม่เป็นลบ

แต่ถ้า n เป็นจำนวนเต็มบวกที่เป็นเลขคี่ ตัวที่อยู่ในราก จะเป็นจำนวนจริงใดๆ**

 

จำนวนจริงในรูปเลขยกกำลัง

จำนวนจริงในรูปเลขยกกำลัง จะเขียนอยู่ในรูป xª เมื่อ x เป็นจำนวนจริงใดๆ และ a เป็นจำนวนเต็มบวก

xª = x⋅x⋅x⋅…⋅x (a ครั้ง)ฃ

x เป็นเลขฐาน

a เป็นเลขชี้กำลัง

เช่น 5³  : 5 เป็นเลขฐาน และ 3 เป็นเลขชี้กำลัง เป็นต้น

สมบัติของเลขยกกำลัง

ให้ x, y เป็นจำนวนจริงใดๆ m, n เป็นจำนวนเต็มบวก

1.)  จำนวนจริงในรูปกรณฑ์  (เลขฐานเหมือนกัน เมื่อคูณกันสามารถนำเลขชี้กำลังมาบวกกันได้)

เช่น  2^5+2^7=2^{5+7}=2^{12}

 

2.)  (xy)^a = x^ay^a

เช่น  (xy)^2=x^2y^2

 

3.)  (x^m)^n = x^{mn}

เช่น  (x^2)^3=x^{2\times 3}=x^6

 

4.)  \frac{x^m}{x^n} = x^{m-n}

เช่น  \frac{x^5}{x^3}=x^{5-3}=x^2

 

5.) x^{m}=x^{n} ก็ต่อเมื่อ m = n

เช่น  2^{x} = 2^{4}  ดังนั้น  x = 4

 

ความสัมพันธ์ระหว่างจำนวนจริงที่มีเลขชี้กำลังกับจำนวนจริงในรูปกรณฑ์

 

ให้ m, n เป็นจำนวนเต็มบวก โดยที่ n มากกว่าหรือเท่ากับ 2 และให้ x เป็นจำนวนจริงที่ไม่เป็นลบ

จะได้ว่า

1.)  \sqrt[n]{x}=x^\frac{1}{n}

2.)  จำนวนจริงในรูปกรณฑ์

3.)   x^{\frac{m}{n}} =(x^m)^\frac{1}{n}=\sqrt[n]{x^m}

จากข้อ 2 และ 3 จะได้ว่า จำนวนจริงในรูปกรณฑ์

การหารากที่สองของจำนวนที่อยู่ในรูป x\pm 2\sqrt{y}

ให้ a, b เป็นจำนวนจริงบวกที่ a + b = x และ ab = y จะได้ว่า

1.) รากที่สองของ x+2\sqrt{y}  คือ  \pm (\sqrt{a}+\sqrt{b}) นั่นคือ \sqrt{x+2\sqrt{y}} = \pm (\sqrt{a} +\sqrt{b})

2.) รากที่สองของ x-2\sqrt{y}  คือ \pm (\sqrt{a}-\sqrt{b}) นั่นคือ \sqrt{x-2\sqrt{y}} = \pm (\sqrt{a} -\sqrt{b})

 

ตัวอย่างโจทย์เกี่ยวกับ จำนวนจริงในรูปกรณฑ์

 

1.) จงหาค่าของ \sqrt{12}+\sqrt{27}

จำนวนจริงในรูปกรณฑ์

2.) จงหาค่าของ \frac{2^{-3}+3^{-4}}{9^{-2}+8^{-1}}

จำนวนจริงในรูปกรณฑ์

3.) จงหารากที่สองของ 13+\sqrt{88}

การหารากที่สอง

4.) หาค่า x ที่ทำให้ (\sqrt{\frac{8}{125}})^{^4}=(\frac{16}{625})^{\frac{1}{x}}

จำนวนจริงในรูปเลขยกกำลัง

 

วีดิโอที่เกี่ยวข้องกับ จำนวนจริงในรูปกรณฑ์ และจำนวนจริงในรูปเลขยกกำลัง

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ประมาณค่าทศนิยมด้วยการปัดทิ้งและปัดทด

บทความนี้จะพูดถึงเรื่องพื้นฐานของทศนิยมอีก 1 เรื่องก็คือการประมาณค่าใกล้เคียงของทศนิยม น้อง ๆคงอาจจะเคยเรียนการประมาณค่าใกล้เคียงของจำนวนเต็มมาแล้ว การประมาณค่าทศนิยมหลักการคล้ายกับการประมาณค่าจำนวนเต็มแต่อาจจะแตกต่างกันที่คำพูดที่ใช้ เช่นจำนวนเต็มจะใช้คำว่าหลักส่วนทศนิยมจะใช้คำว่าตำแหน่ง บทความนี้จึงจะมาแนะนำหลักการประมาณค่าทศนิยมให้น้อง ๆเข้าใจ และสามารถประมาณค่าทศนิยมได้อย่างถูกต้อง

การคูณเศษส่วนและจํานวนคละ

การคูณเศษส่วนและจํานวนคละ

บทความนี้จะพาน้อง ๆมารู้จักกับการคูณเศษส่วนและจำนวนคละ รวมถึงเทคนิคการคูณเศษส่วนและจำนวนคละที่ถูกต้องและรวดเร็ว หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือหลักการคูณเศษส่วนและจำนวนคละประเภทต่าง ๆ การตัดทอนเศษส่วนจำนวนคละและตัวอย่างการคูณเศษส่วนจำนวนคละที่เข้าใจง่ายและเห็นภาพ สามารถนำไปใช้ได้จริงในห้องเรียน

วงรี

วงรี

วงรี วงรี จะประกอบไปด้วย 1) แกนเอกคือแกนที่ยาวที่สุด และแกนโทคือแกนที่สั้นกว่า 2) จุดยอด 3) จุดโฟกัส ซึ่งจะแตกต่างกันไปแล้วแต่ว่าแกนใดเป็นแกนเอก 4) ความเยื้องศูนย์กลาง (eccentricity) วงรี ที่มีจุดศูนย์กลางอยู่ที่จุดกำเนิด จากกราฟ สมการรูปแบบมาตรฐาน:    จุดยอด : (a, 0) และ (-a,

เรียนรู้เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่�

เรียนรู้เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

สวัสดีนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับ  “เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันโลดเด้อ Let’s go!   ทบทวน Present Simple Tense     Present แปลว่า ปัจจุบัน ดังนั้น Present Simple

ศึกษาตัวบทโคลนติดล้อ ตอน ความนิยมเป็นเสมียน

โคลนติดล้อ เป็นบทความแสดงความคิดเห็นของพระบาทสมเด็จพระมงกุฎมีเนื้อหาเกี่ยวกับการเมือง การปลุกใจคนไทยให้รักชาติ และมีทั้งฉบับภาษาไทยและฉบับแปลเป็นภาษาอังกฤษ แค่นี้ก็น่าสนใจแล้วใช่ไหมคะ แต่ความดีเด่นของหนังสือเล่มนี้ยังมีอีกมาก บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ตัวบทที่สำคัญและคุณค่าของบทความที่ 4 ในเรื่องโคลนติดล้อตอน ความนิยมเป็นเสมียน พร้อม ๆ กันเลยค่ะ   บทเด่นใน โคลนติดล้อ ตอน ความนิยมเป็นเสมียน   บทนี้พูดถึงความนิยมในการเป็นเสมียนของหนุ่มสาวในยุคนั้นที่สนใจงานเสมียนมากกว่าการกลับไปช่วยทำการเกษตรที่บ้านเกิดเพราะเห็นว่าเสียเวลา คิดว่าตัวเองเป็นผู้ได้รับการศึกษาสูง จึงไม่สมควรที่จะไปทำงานที่คนไม่รู้หนังสือก็ทำได้  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1