ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์ จะเกี่ยวข้องกับ θ พิกัดของ จุด (x, y) ซึ่งในบทความนี้จะอธิบายเกี่ยวกับ ความสัมพันธ์ระหว่าง x, y กับ θ

จากบทความที่ผ่านมาเราได้รู้จักวงกลมหนึ่งหน่วยและการวัดความยาวส่วนโค้ง ในบทความนี้น้องๆจะได้รู้จักกับฟังก์ชันไซน์ (sine function) และฟังก์ชันโคไซน์ (cosine function) และวิธีการหาค่าของฟังก์ชันทั้งสอง

Sine function = {(θ, y) | y = sinθ}

cosine function = {(θ, x) | x = cosθ}

จาก P(θ) = (x, y)  และจาก x = cosθ และ y = sinθ

จะได้ว่า P(θ) = (cosθ, sinθ)

โดเมนและเรนจ์ของ sine function และ cosine function

โดเมนของฟังก์ชันไซน์และโคไซน์ คือ จำนวนจริง นั่นคือ θ ∈ \mathbb{R}

เรนจ์ของฟังก์ชันไซน์และโคไซน์คือ [-1, 1] นั่นคือ ค่าของ cosθ และ sinθ จะอยู่ในช่วง [-1, 1]

 

ความสัมพันธ์ของฟังก์ชันไซน์และโคไซน์

พิจารณาสมการวงกลมหนึ่งหน่วย (รัศมีเป็น 1)  x² + y² = 1

เมื่อแทน x = cosθ และ y = sinθ ในสมการของวงกลมหนึ่งหน่วย

จะได้ว่า (cosθ)² + (sinθ)² = 1 สามารถเขียนได้อีกรูปแบบหนึ่ง คือ

cos²θ + sin²θ = 1

การหา ค่าของฟังก์ชันไซน์และโคไซน์

การหาค่าฟังก์ชันไซน์และโคไซน์นั้น น้องๆจะต้องมีพื้นฐานเรื่องความยาวส่วนโค้งและพิกัดจุดปลายส่วนโค้งพร้อมทั้งรู้เรื่องจตุภาคด้วย น้องๆสามารถดูเนื้อหาได้ที่ >>ความยาวส่วนโค้งของวงกลมหนึ่งหน่วย<<

ค่าของฟังก์ชันไซน์และโคไซน์

กำหนดให้ P(θ) = (x, y) และ x = cosθ , y = sinθ

พิจารณา θ = 0 จะได้ว่า พิกัดจุดของ P(0) คือ (1, 0) นั่นคือ P(0) = (1, 0)

ดังนั้น x = 1 และ y = 0 นั่นคือ cos(0) = 1 และ sin(0) = 0

พิจารณาที่ θ = \frac{\pi }{2} จะได้ว่า P( \frac{\pi }{2} ) = (0, 1)

ดังนั้น cos( \frac{\pi }{2} ) = 0 และ sin( \frac{\pi }{2} ) = 1

พิจารณา θ = \pi จะได้ว่า P( \pi) = (-1, 0)

ดังนั้น cos( \pi) = -1 และ sin( \pi) = 0

พิจารณาที่ θ = \frac{3\pi }{2} จะได้ว่า P( \frac{3\pi }{2} ) = (0, -1)

ดังนั้น cos( \frac{3\pi }{2} ) = 0 และ cos( \frac{3\pi }{2} ) = -1

การหาค่า sinθ cosθ โดยใช้มือซ้าย

ค่าของฟังก์ชันไซน์และโคไซน์

  • แต่ละนิ้วจะแทนค่าของ θ ดังรูป
  • เราจะหาค่าโดยการพับนิ้ว เช่น ต้องการหา sin( \frac{\pi }{3} ) เราก็จะพับนิ้วนางลง
  • เราจะให้นิ้วที่พับลงเป็นตัวแบ่งระหว่าง cos กับ sin ซึ่งจะแบ่งออกเป็นฝั่งซ้ายและฝั่งขวา
  • ช่องว่างในรูทคือ จำนวนนิ้วที่เรานับได้เมื่อเราพับนิ้วลง
  • หากต้องการค่า sin ให้นำจำนวนนิ้วฝั่งซ้ายมาเติมในรูท
  • และหากต้องการค่า cos ให้นำจำนวนนิ้วฝั่งขวามาเติมในรูท

หากน้องๆยังงงๆเรามาดูตัวอย่างกันค่ะ

ต้องการหาค่า cos( \frac{\pi }{4} ) และ sin( \frac{\pi }{6} )

cos( \frac{\pi }{4} )

ค่าของฟังก์ชันไซน์และโคไซน์

จากโจทย์เราต้องการหาค่าโคไซน์ ที่ θ = \frac{\pi }{4} ซึ่งตรงกับนิ้วกลาง

ดังนั้นเราจึงพับนิ้วกลางลง และหาค่าโคไซน์เราต้องดูจำนวนนิ้วฝั่งขวาซึ่งก็คือนิ้วที่ถูกระบายด้วยสีส้ม จะเห็นว่ามี 2 นิ้ว ดังนั้น cos( \frac{\pi }{4} ) = \frac{\sqrt{2}}{2}

 

sin( \frac{\pi }{6} )

ค่าของฟังก์ชันไซน์และโคไซน์

จากโจทย์ต้องการหาค่าฟังก์ชันไซน์ ที่ θ = \frac{\pi }{6} เราจึงพับนิ้วชี้ลง และดูจำนวนนิ้วฝั่งซ้ายซึ่งก็คือนิ้วที่ถูกทาด้วยสีฟ้า ดังนั้น sin( \frac{\pi }{6} ) = \frac{1}{2}

แล้วสมมติว่า θ เป็นค่าอื่นๆนอกเหนือจากค่าเหล่านี้ล่ะ เช่น \frac{2\pi }{3} เราจะหายังไงดี???

จริงๆแล้วค่าของ \frac{2\pi }{3} นั้นเราสามารถดูของ \frac{\pi }{3} ได้เลย แต่!!!! เครื่องหมายอาจจะต่างกัน ให้น้องๆสังเกตว่า ค่าของ \frac{2\pi }{3} นั้นอยู่ควอดรันต์ที่เท่าไหร่ แล้วน้องจะรู้ว่าค่า x ควรเป็นลบหรือเป็นบวก ค่า y ควรเป็นลบหรือเป็นบวก

อย่างเช่น cos( \frac{2\pi }{3} )

เรามาดูกันว่า θ = \frac{2\pi }{3} อยู่ควอดรันต์เท่าไหร่

จะเห็นว่าอยู่ควอดรันต์ที่ 2 ซึ่ง (- , +) ดังนั้น ค่า x เป็นจำนวนลบ ค่า y เป็นจำนวนบวก และเรารู้ว่า x = cosθ ดังนั้น ค่า cos( \frac{2\pi }{3} ) เป็นจำนวนลบแน่นอน

จากนั้นใช้มือซ้ายเพื่อหาค่า cos โดยใช้ค่า θ = \frac{\pi }{3} ได้เลย จะได้ว่า cos( \frac{\pi }{3} ) = \frac{1}{2}

ดังนั้น cos( \frac{2\pi }{3} ) = -\frac{1}{2}

 

นอกจากจะดูหาค่าโดยใช้มือซ้ายแล้ว น้องๆสามารถดูตามรูปด้านล่างนี้ได้เลยค่ะ

ในวงกลมที่ระบายสีฟ้านั้น คือค่าของ θ  ซึ่งแต่ละ θ ก็จะบอกพิกัดจุด (x, y) ซึ่งก็คือค่าของ cosθ และ sinθ นั่นเอง

เช่น sin( \frac{5\pi }{6} ) = \frac{1}{2} และ cos( \frac{5\pi }{6} ) = -\frac{\sqrt{3}}{2}

ตัวอย่างการหาค่าฟังก์ชันไซน์และโคไซน์

1) หาค่า sin( \frac{7\pi }{6} )

วิธีทำ หาค่า sin( \frac{\pi }{6} )

จะได้ว่า sin( \frac{\pi }{6} ) = \frac{1}{2}

จากนั้นดูพิกัดจุดของ P( \frac{7\pi }{6} ) จะได้ว่า อยู่ควอดรันต์ที่ 3 ซึ่ง (- , -) นั่นคือ ค่า x เป็นจำนวนลบ (cosθ เป็นจำนวนลบ) และค่า y เป็นจำนวนลบ

และจาก y = sinθ

ดังนั้น sin( \frac{7\pi }{6} ) = -\frac{1}{2}

 

2) หาค่า sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} )

วิธีทำ จากความสัมพันธ์ของไซน์และโคไซน์ sin²θ + cos²θ = 1

จะได้ว่าค่าของ sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} ) = 1

เนื่องจากว่าเราเรียนคณิตศาสตร์เราจะต้องไม่เชื่ออะไรง่ายๆ ดังนั้นเราจะมาหาค่าโดยใช้วิธีตรงกันค่ะ

จาก sin( \frac{\pi }{6} ) = \frac{1}{2} จะได้ว่า sin²( \frac{\pi }{6} ) = \frac{1}{4} และ cos( \frac{\pi }{6} ) = \frac{\sqrt{3}}{2} จะได้ว่า cos²( \frac{\pi }{6} ) = \frac{3}{4}

ดังนั้น  \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1

ดังนั้น สรุปได้ว่า sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} ) = 1

 

3) หาค่า cos²( \frac{\pi }{2} ) + cos²( \frac{3\pi }{2} ) – cos²( \pi )

วิธีทำ จาก cos( \frac{\pi }{2} ) = 0  cos( \frac{3\pi }{2} ) = 0 และ cos( \pi ) = -1

จะได้ว่า cos²( \frac{\pi }{2} ) = 0  cos²( \frac{3\pi }{2} ) = 0 และ cos²( \pi ) = (-1)² = 1

ดังนั้น cos²( \frac{\pi }{2} ) + cos²( \frac{3\pi }{2} ) – cos²( \pi ) = 0 + 0 – 1 = -1

น้องๆสามารถหาแบบฝึกหัดมาทำเพิ่มเติมโดยใช้กฎมือซ้ายในการช่วยหาค่าฟังก์ชันแต่ทั้งนี้น้องๆก็ต้องมีพื้นฐานเกี่ยวกับความยาวจุดปลายส่วนโค้งด้วยนะคะ และการหาค่าฟังก์นั้นนี้หากน้องๆทำบ่อยจะทำให้น้องจำได้ และเวลาสอบก็จะช่วยให้ทำข้อสอบได้เร็วยิ่งขึ้นด้วยค่ะ

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม เป็นการนำเสนอข้อมูลโดยการเเบ่งพื้นที่ของวงกลมออกเป็นส่วน ๆ เเละมีขนาดของสัดส่วนตามข้อมูลที่ได้ทำการเก็บรวบรวมข้อมูลไว้ การนำเสนอด้วยเเผนภูมิวงกลมเป็นการนำเสนอข้อมูลที่มีอยู่ได้อย่างน่าสนใจ สามารถวิเคราะห์เเละเเปรข้อมูลได้ง่ายขึ้น การสร้างแผนภูมิรูปวงกลมเพื่อนำเสนอข้อมูล การสร้างแผนภูมิวงกลม ทำได้โดยการเเบ่งมุมรอบจุดศูนย์กลางของวงกลมที่มีขนาด 360 องศา ออกเป็นส่วน ๆ ที่เรียกว่า มุมที่จุดศูนย์กลางของวงกลม ตามขนาดที่ได้จากการเทียบส่วนกับปริมาณทั้งหมดในข้อมูล มุมที่จุดศูนย์กลาง = (จำนวนที่สนใจ/จำนวนทั้งหมด) x 360 องศา ตัวอย่างการสร้างแผนภูมิวงกลม จากข้อมูลการสำรวจที่ได้เก็บรวมรวบข้อมูลจากนักเรียนทั้งหมด 200

ส่วน 10 หรือ ส่วน 1000 แปลงเป็นทศนิยมกันได้หมดถ้าสดชื่น!

จากบทความที่แล้วเราได้ทราบความสัมพันธ์ของเศษส่วนและทศนิยมไปแล้ว เชื่อว่าน้อง ๆหลายคนคงเกิดคำถามในใจว่า แล้วถ้าเจอเศษส่วนที่ตัวส่วนไม่ใช่ 10, 100 หรือ 1000 ต้องทำอย่างไร บทความนี้จะมาไขข้อสงสัยพร้อมกับแสดงวิธีคิดที่ทำให้น้อง ๆต้องพูดเป็นเสียงเดียวกันว่า ง๊ายง่าย!

สังข์ทอง จากนิทานชาดกสู่วรรณคดีไทยอันเลื่องชื่อ

สังข์ทอง เป็นวรรณคดีที่แพร่หลายและโด่งดังอย่างมากในสังคมไทย ไม่ว่าเวลาจะผ่านไปกี่ร้อยปี ความนิยมของวรรณคดีเรื่องดังกล่าวนี้ก็ยังไม่เสื่อมคลาย ดูได้จากการที่ถูกผลิตซ้ำตั้งแต่เป็นกลอนบทละครจนถึงละครโทรทัศน์ ที่น้อง ๆ หลายคนก็คงจะเดินเห็นผ่านตากันมาแล้วบ้าง บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงความเป็นมาของวรรณคดีเรื่องนี้ พร้อมเรื่องย่อหนึ่งตอนสำคัญที่เป็นเหมือนจุดเริ่มต้นของเรื่องราวทั้งหมดอย่างตอน กำเนิดพระสังข์ กันค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยนะคะ   สังข์ทอง ความเป็นมา     สังข์ทอง มีที่มาจาก สุวรรณสังขชาดก

ศึกษาที่มาของ ขัตติยพันธกรณี บทประพันธ์ที่มาจากเรื่องจริงในอดีต

ขัตติยพันธกรณี เป็นพระราชนิพนธ์ในรัชกาลที่ 5 มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ น้อง ๆ สงสัยกันไหมคะว่าเกี่ยวกับเรื่องไหน เหตุใดพระองค์จึงต้องพระราชนิพนธ์วรรณคดีเรื่องนี้ขึ้นมา เราไปหาคำตอบถึงที่มา ความสำคัญ และเนื้อเรื่องกันเลยค่ะ รับรองว่านอกจากจะได้ความรู้เกี่ยวกับบทประพันธ์แล้ว บทเรียนในวันนี้ยังมีเกร็ดความรู้ทางประวัติศาสตร์ให้น้อง ๆ อีกด้วยค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ที่มาของ ขัตติยพันธกรณี     ขัตติยพันธกรณีมีความหมายถึงเหตุอันเป็นข้อผูกพันของกษัตริย์ เป็นพระราชหัตถเลขาของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวและตอบกลับโดยสมเด็จกรมพระยาดำรงราชานุภาพ มีที่มาจากเหตุการณ์จริงในประวัติศาสตร์ ช่วง

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1