ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์ จะเกี่ยวข้องกับ θ พิกัดของ จุด (x, y) ซึ่งในบทความนี้จะอธิบายเกี่ยวกับ ความสัมพันธ์ระหว่าง x, y กับ θ

จากบทความที่ผ่านมาเราได้รู้จักวงกลมหนึ่งหน่วยและการวัดความยาวส่วนโค้ง ในบทความนี้น้องๆจะได้รู้จักกับฟังก์ชันไซน์ (sine function) และฟังก์ชันโคไซน์ (cosine function) และวิธีการหาค่าของฟังก์ชันทั้งสอง

Sine function = {(θ, y) | y = sinθ}

cosine function = {(θ, x) | x = cosθ}

จาก P(θ) = (x, y)  และจาก x = cosθ และ y = sinθ

จะได้ว่า P(θ) = (cosθ, sinθ)

โดเมนและเรนจ์ของ sine function และ cosine function

โดเมนของฟังก์ชันไซน์และโคไซน์ คือ จำนวนจริง นั่นคือ θ ∈ \mathbb{R}

เรนจ์ของฟังก์ชันไซน์และโคไซน์คือ [-1, 1] นั่นคือ ค่าของ cosθ และ sinθ จะอยู่ในช่วง [-1, 1]

 

ความสัมพันธ์ของฟังก์ชันไซน์และโคไซน์

พิจารณาสมการวงกลมหนึ่งหน่วย (รัศมีเป็น 1)  x² + y² = 1

เมื่อแทน x = cosθ และ y = sinθ ในสมการของวงกลมหนึ่งหน่วย

จะได้ว่า (cosθ)² + (sinθ)² = 1 สามารถเขียนได้อีกรูปแบบหนึ่ง คือ

cos²θ + sin²θ = 1

การหา ค่าของฟังก์ชันไซน์และโคไซน์

การหาค่าฟังก์ชันไซน์และโคไซน์นั้น น้องๆจะต้องมีพื้นฐานเรื่องความยาวส่วนโค้งและพิกัดจุดปลายส่วนโค้งพร้อมทั้งรู้เรื่องจตุภาคด้วย น้องๆสามารถดูเนื้อหาได้ที่ >>ความยาวส่วนโค้งของวงกลมหนึ่งหน่วย<<

ค่าของฟังก์ชันไซน์และโคไซน์

กำหนดให้ P(θ) = (x, y) และ x = cosθ , y = sinθ

พิจารณา θ = 0 จะได้ว่า พิกัดจุดของ P(0) คือ (1, 0) นั่นคือ P(0) = (1, 0)

ดังนั้น x = 1 และ y = 0 นั่นคือ cos(0) = 1 และ sin(0) = 0

พิจารณาที่ θ = \frac{\pi }{2} จะได้ว่า P( \frac{\pi }{2} ) = (0, 1)

ดังนั้น cos( \frac{\pi }{2} ) = 0 และ sin( \frac{\pi }{2} ) = 1

พิจารณา θ = \pi จะได้ว่า P( \pi) = (-1, 0)

ดังนั้น cos( \pi) = -1 และ sin( \pi) = 0

พิจารณาที่ θ = \frac{3\pi }{2} จะได้ว่า P( \frac{3\pi }{2} ) = (0, -1)

ดังนั้น cos( \frac{3\pi }{2} ) = 0 และ cos( \frac{3\pi }{2} ) = -1

การหาค่า sinθ cosθ โดยใช้มือซ้าย

ค่าของฟังก์ชันไซน์และโคไซน์

  • แต่ละนิ้วจะแทนค่าของ θ ดังรูป
  • เราจะหาค่าโดยการพับนิ้ว เช่น ต้องการหา sin( \frac{\pi }{3} ) เราก็จะพับนิ้วนางลง
  • เราจะให้นิ้วที่พับลงเป็นตัวแบ่งระหว่าง cos กับ sin ซึ่งจะแบ่งออกเป็นฝั่งซ้ายและฝั่งขวา
  • ช่องว่างในรูทคือ จำนวนนิ้วที่เรานับได้เมื่อเราพับนิ้วลง
  • หากต้องการค่า sin ให้นำจำนวนนิ้วฝั่งซ้ายมาเติมในรูท
  • และหากต้องการค่า cos ให้นำจำนวนนิ้วฝั่งขวามาเติมในรูท

หากน้องๆยังงงๆเรามาดูตัวอย่างกันค่ะ

ต้องการหาค่า cos( \frac{\pi }{4} ) และ sin( \frac{\pi }{6} )

cos( \frac{\pi }{4} )

ค่าของฟังก์ชันไซน์และโคไซน์

จากโจทย์เราต้องการหาค่าโคไซน์ ที่ θ = \frac{\pi }{4} ซึ่งตรงกับนิ้วกลาง

ดังนั้นเราจึงพับนิ้วกลางลง และหาค่าโคไซน์เราต้องดูจำนวนนิ้วฝั่งขวาซึ่งก็คือนิ้วที่ถูกระบายด้วยสีส้ม จะเห็นว่ามี 2 นิ้ว ดังนั้น cos( \frac{\pi }{4} ) = \frac{\sqrt{2}}{2}

 

sin( \frac{\pi }{6} )

ค่าของฟังก์ชันไซน์และโคไซน์

จากโจทย์ต้องการหาค่าฟังก์ชันไซน์ ที่ θ = \frac{\pi }{6} เราจึงพับนิ้วชี้ลง และดูจำนวนนิ้วฝั่งซ้ายซึ่งก็คือนิ้วที่ถูกทาด้วยสีฟ้า ดังนั้น sin( \frac{\pi }{6} ) = \frac{1}{2}

แล้วสมมติว่า θ เป็นค่าอื่นๆนอกเหนือจากค่าเหล่านี้ล่ะ เช่น \frac{2\pi }{3} เราจะหายังไงดี???

จริงๆแล้วค่าของ \frac{2\pi }{3} นั้นเราสามารถดูของ \frac{\pi }{3} ได้เลย แต่!!!! เครื่องหมายอาจจะต่างกัน ให้น้องๆสังเกตว่า ค่าของ \frac{2\pi }{3} นั้นอยู่ควอดรันต์ที่เท่าไหร่ แล้วน้องจะรู้ว่าค่า x ควรเป็นลบหรือเป็นบวก ค่า y ควรเป็นลบหรือเป็นบวก

อย่างเช่น cos( \frac{2\pi }{3} )

เรามาดูกันว่า θ = \frac{2\pi }{3} อยู่ควอดรันต์เท่าไหร่

จะเห็นว่าอยู่ควอดรันต์ที่ 2 ซึ่ง (- , +) ดังนั้น ค่า x เป็นจำนวนลบ ค่า y เป็นจำนวนบวก และเรารู้ว่า x = cosθ ดังนั้น ค่า cos( \frac{2\pi }{3} ) เป็นจำนวนลบแน่นอน

จากนั้นใช้มือซ้ายเพื่อหาค่า cos โดยใช้ค่า θ = \frac{\pi }{3} ได้เลย จะได้ว่า cos( \frac{\pi }{3} ) = \frac{1}{2}

ดังนั้น cos( \frac{2\pi }{3} ) = -\frac{1}{2}

 

นอกจากจะดูหาค่าโดยใช้มือซ้ายแล้ว น้องๆสามารถดูตามรูปด้านล่างนี้ได้เลยค่ะ

ในวงกลมที่ระบายสีฟ้านั้น คือค่าของ θ  ซึ่งแต่ละ θ ก็จะบอกพิกัดจุด (x, y) ซึ่งก็คือค่าของ cosθ และ sinθ นั่นเอง

เช่น sin( \frac{5\pi }{6} ) = \frac{1}{2} และ cos( \frac{5\pi }{6} ) = -\frac{\sqrt{3}}{2}

ตัวอย่างการหาค่าฟังก์ชันไซน์และโคไซน์

1) หาค่า sin( \frac{7\pi }{6} )

วิธีทำ หาค่า sin( \frac{\pi }{6} )

จะได้ว่า sin( \frac{\pi }{6} ) = \frac{1}{2}

จากนั้นดูพิกัดจุดของ P( \frac{7\pi }{6} ) จะได้ว่า อยู่ควอดรันต์ที่ 3 ซึ่ง (- , -) นั่นคือ ค่า x เป็นจำนวนลบ (cosθ เป็นจำนวนลบ) และค่า y เป็นจำนวนลบ

และจาก y = sinθ

ดังนั้น sin( \frac{7\pi }{6} ) = -\frac{1}{2}

 

2) หาค่า sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} )

วิธีทำ จากความสัมพันธ์ของไซน์และโคไซน์ sin²θ + cos²θ = 1

จะได้ว่าค่าของ sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} ) = 1

เนื่องจากว่าเราเรียนคณิตศาสตร์เราจะต้องไม่เชื่ออะไรง่ายๆ ดังนั้นเราจะมาหาค่าโดยใช้วิธีตรงกันค่ะ

จาก sin( \frac{\pi }{6} ) = \frac{1}{2} จะได้ว่า sin²( \frac{\pi }{6} ) = \frac{1}{4} และ cos( \frac{\pi }{6} ) = \frac{\sqrt{3}}{2} จะได้ว่า cos²( \frac{\pi }{6} ) = \frac{3}{4}

ดังนั้น  \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1

ดังนั้น สรุปได้ว่า sin²( \frac{\pi }{6} ) + cos²( \frac{\pi }{6} ) = 1

 

3) หาค่า cos²( \frac{\pi }{2} ) + cos²( \frac{3\pi }{2} ) – cos²( \pi )

วิธีทำ จาก cos( \frac{\pi }{2} ) = 0  cos( \frac{3\pi }{2} ) = 0 และ cos( \pi ) = -1

จะได้ว่า cos²( \frac{\pi }{2} ) = 0  cos²( \frac{3\pi }{2} ) = 0 และ cos²( \pi ) = (-1)² = 1

ดังนั้น cos²( \frac{\pi }{2} ) + cos²( \frac{3\pi }{2} ) – cos²( \pi ) = 0 + 0 – 1 = -1

น้องๆสามารถหาแบบฝึกหัดมาทำเพิ่มเติมโดยใช้กฎมือซ้ายในการช่วยหาค่าฟังก์ชันแต่ทั้งนี้น้องๆก็ต้องมีพื้นฐานเกี่ยวกับความยาวจุดปลายส่วนโค้งด้วยนะคะ และการหาค่าฟังก์นั้นนี้หากน้องๆทำบ่อยจะทำให้น้องจำได้ และเวลาสอบก็จะช่วยให้ทำข้อสอบได้เร็วยิ่งขึ้นด้วยค่ะ

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติการคูณจำนวนจริง

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

เทคนิคการใช้ Yes, No Questions M.1

เทคนิคการใช้ Yes, No Questions ในภาษาอังกฤษ

  สวัสดีค่ะนักเรียน ม.  1 ที่น่ารักทุกคนวันนี้ครูจะพาไปดูเทคนิคและวิธีการอย่างง่ายในการใช้ประโยค Yes/No questions กันค่ะไปลุยกันเลยค่า Yes, No Questions คืออะไร คือ ประโยคคำถามที่ต้องการคำตอบรับ (Yes) หรือปฏิเสธ (No) เป็นการถามที่ผู้ถามอาจจะมีข้อมูลอยู่บ้างว่า ว่าจะเป็นอย่างนั้นอย่างนี้ หรือผู้ถามอาจจะถามเพื่อให้มั่นใจว่าเป็นจริงตามที่เข้าใจหรือเปล่า ในที่นี้ครูจึงแยกออกเป็น 3 ชนิดค่ะ คือ ประโยคคำถามที่ขึ้นต้นด้วย

สุภาษิตสอนหญิง ข้อคิดเตือนใจหญิงจากยุคสู่ยุค

สุภาษิต คือถ้อยคำหรือข้อความที่กล่าวสืบกันมาตั้งแต่อดีต มีความหมายเป็นคติสอนใจ ไม่ว่าจะเป็นเรื่องของการดำเนินชีวิต ทั้งทางความคิด การพูด และการกระทำ มีสุภาษิตมากมายที่สอนถึงการปฏิบัติตัวของผู้หญิงให้ถูกต้องเหมาะสม บทเรียนในวันนี้ น้อง ๆ จะได้เรียนรู้เรื่อง สุภาษิตสอนหญิง เป็นหนึ่งในบทเรียนเรื่องสุภาษิตที่มีความสำคัญและมีคุณค่าอย่างมาก จะเป็นอย่างไรบ้างนั้นเราจะดูพร้อมกันเลยค่ะ   สุภาษิตสอนหญิง : ความเป็นมา     สุภาษิตสอนหญิง เป็นวรรณกรรมคำสอนประเภทกลอนสุภาพ แต่งโดยสุนทรภู่ ประมาณปี

NokAcademy_Infinitives after verbs

Infinitives after verbs

Hi guys! สวัสดีค่ะนักเรียนม.5 ที่รักทุกคนวันนี้เราจะไปดูการใช้ Infinitives after verbs กันเด้อ ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า Let’s go!   ทบทวนความหมายของ “Infinitive”   Infinitive คือ   กริยารูปแบบที่ไม่ผัน ไม่เติมอะไรใดๆเลย ที่นำหน้าด้วย to (Infinitive with “to” หรือ

เรียนรู้บทร้องกรองสุภาษิต ตนเป็นที่พึ่งแห่งตน

การนำสุภาษิตมาแต่งเป็นบทร้อยกรอง เรียกว่า บทประพันธ์ร้อยกรองสุภาษิต ซึ่งบทที่น้อง ๆ จะได้เรียนกันในวันนี้คือบทร้อยกรองสุภาษิตเรื่อง ตนเป็นที่พึ่งแห่งตน เราไปดูกันเลยค่ะว่าที่มจากของบทร้อยกรองนี้จะเป็นอย่างไร มาจากสุภาษิตอะไร รวมไปถึงถอดความหมายตัวบท ศึกษาคำศัพท์ที่น่ารู้และศึกษาคุณค่าที่อยู่ในเรื่องด้วยค่ะ ถ้าพร้อมแล้วเราไปดูพร้อมกันเลย   ความเป็นมา ตนเป็นที่พึ่งแห่งตน     ตนเป็นที่พึ่งแห่งตน ผู้แต่งคือ นายเพิ่ม สวัสดิ์วรรณกิจ เป็นบทร้อยกรองประเภทกลอนแปด พิมพ์รวมอยู่ในหนังสือบทประพันธ์อธิบายสุภาษิตของวรรณคดีสมาคมแห่งประเทศไทย    

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1