ความเท่ากันทุกประการของรูปเรขาคณิต

ในบทความนี้เราจะได้เรียนรู้การเท่ากันทุกประการในส่วนต่างๆของรูปเรขาคณิต และบทนิยามที่กล่าวถึงความเท่ากันทุกประการของรูปเรขาคณิต

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความเท่ากันทุกประการของรูปเรขาคณิตเกิดจากการสะท้อน การเลื่อนขนาน และการหมุน ซึ่งเป็นตัวอย่างของการเคลื่อนที่รูปเรขาคณิตซึ่งเป็นการแปลงตำแหน่งของรูปเรขาคณิตบนระนาบโดยที่ระยะระหว่างจุดสองจุดใด ๆของรูปนั้นไม่เปลี่ยนแปลง  หมายความถึงว่า รูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง

ความเท่ากันทุกประการของรูปเรขาคณิต

พิจารณารูปต่อไปนี้

เท่ากันทุกประการ

ถ้าเรากำหนดให้ A เป็นรูปต้นแบบ และ A เกิดการแปลงไปเป็นรูป B C และ D ซึ่งเกิดจากการ “เคลื่อนที่” รูป A ดังนี้

รูป B เกิดจากการสะท้อนที่แกน Y

รูป D เกิดจากการเลื่อนขนานไปตามแกน Y

รูป C เกิดจากการหมุนรูป A ไป 180 °รอบจุด O

การเคลื่อนที่รูปเรขาคณิตจากการแปลงดังกล่าวข้างต้น เป็นตัวอย่างหนึ่งของการเปลี่ยนตำแหน่งของรูปเรขาคณิตบนระนาบ โดยที่ระยะระหว่างจุดสองจุดใด ๆ ของรูปนั้นไม่เปลี่ยนแปลง

แสดงว่ารูปร่างและขนาดของรูปเรขาคณิตที่เคลื่อนที่นั้นไม่เปลี่ยนแปลง และถ้าเราเคลื่อนรูป A B C และ D มาทับกัน รูปทั้งหมดก็สามารถทับกันได้สนิท เราถือว่ารูปทั้งหมดนั้นเท่ากันทุกประการ

บทนิยาม “รูปเรขาคณิตสองรูปเท่ากันทุกประการก็ต่อเมื่อเคลื่อนที่รูปหนึ่งไปทับอีกรูปหนึ่งได้สนิท”

นิยาม

การตรวจสอบว่ารูปเรขาคณิตสองรูปใดเท่ากันทุกประการหรือไม่อาจทำได้โดยใช้กระดาษลอกลายลอกรูปหนึ่งแล้วยกไปทับอีกรูปหนึ่งถ้าทับกันได้สนิทแสดงว่ารูปเรขาคณิตเท่ากันทุกประการ

ความเท่ากันทุกประการของส่วนของเส้นตรง

ส่วนของเส้นตรงสองเส้นเท่ากันทุกประการก็ต่อเมื่อส่วนของเส้นตรงทั้งสองนั้นยาวเท่ากัน

ความเท่ากันทุกประการของเส้นตรง

จากรูป AB เท่ากันทุกประการกับ CD แต่เวลาเขียนเป็นสัญลักษณ์ไม่นิยมเขียนว่า AB = CD จะเขียนเพียง AB = CD เท่านั้น

ความเท่ากันทุกประการของมุม

มุมสองมุมเท่ากันทุกประการก็ต่อเมื่อมุมทั้งสองมุมนั้นมีขนาดเท่ากัน

ความเท่ากันทุกประการของมุม

จากรูป ถ้า <ABC = <DEF แล้ว <ABC = <DEF และการเขียนสัญลักษณ์แทนการเท่ากันทุกประการของมุมจะเขียนเพียง <ABC = <DEF เท่านั้น

ข้อสังเกต

  1. เส้นตรงสองเส้นตัดกันจะเกิดมุมที่เท่ากันทุกประการ 2 คู่เรียกว่า “มุมตรงข้าม”

  1. ถ้ากำหนดให้รูป A = B และรูป B = C แล้วจะได้ว่ารูป A = รูป C
  2. รูปสี่เหลี่ยมผืนผ้าที่มีพื้นที่เท่ากัน อาจจะไม่เท่ากันทุกประการ เช่น รูปทั้งสองมี พื้นที่ 18 ตารางหน่วย รูปแรกอาจจะมีขนาด 2×9 ตารางหน่วยและรูปที่ 2 อาจจะมีขนาด 3 X 6 ตารางหน่วยเป็นต้น
  3. รูปสามเหลี่ยมสองรูปที่มีมุมเท่ากัน 3 คู่อาจจะไม่เท่ากันทุกประการ เช่น

  1. วงกลม 2 วงที่มีรัศมียาวเท่ากันจะเท่ากันทุกประการ
  2. รังสี 2 เส้นใด ๆ จะเท่ากันทุกประการ
  3. รูปสี่เหลี่ยมจัตุรัส 2 รูปที่มีพื้นที่เท่ากันจะเท่ากันทุกประการ

สมบัติอื่นๆของความเท่ากันทุกประการ

คลิปตัวอย่างเรื่องความเท่ากันทุกประการ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Let Me Introduce Myself: พูดเกี่ยวกับตัวเองแบบง่าย

พี่เชื่อว่าพอเปิดเทอมทีไรสิ่งที่เราต้องทำนั่นก็คือ การแนะนำตัวเอง ไม่ว่าจะเป็นทั้งในวิชาภาษาอังกฤษ หรือวิชาอื่นๆ นอกจากการแนะนำตัวเองแล้ว น้องๆ อาจจะต้องพูดบรรยายเกี่ยวกับตัวเองอีกด้วย วันนี้เราจะมาดูกันว่าเราจะสามารถพูดและบรรยายเกี่ยวกับตนเองให้น่าสนใจได้อย่างไรบ้าง

การเขียนแนะนำความรู้

เขียนแนะนำความรู้อย่างไรให้น่าอ่าน แค่ทำตามหลักการต่อไปนี้

บทนำ สวัสดีน้อง ๆ ทุกคน ยินดีต้อนรับเข้าสู่บทเรียนภาษาไทย วันนี้เราได้เตรียมสาระความรู้เกี่ยวกับหลักการเขียนมาให้น้อง ๆ ได้นำไปใช้ประโยชน์กัน โดยเนื้อหาที่เราจะมาเรียนในวันนี้จะเป็นเรื่องของการเขียนเพื่อแนะนำความรู้ ความเข้าใจให้กับผู้อ่าน ซึ่งเราจะมาทำความเข้าใจหลักการง่าย ๆ ที่จะนำไปใช้ในการเขียนให้ความรู้ผู้อื่น โดยที่น้อง ๆ สามารถนำไปใช้ในการเรียนวิชาอื่น ๆ ได้ หรือใช้กับการเรียนในระดับที่สูงขึ้นได้เลย เป็นพื้นฐานการเขียนที่เด็ก ๆ ทุกคนควรได้รับการฝึกฝนจะได้นำไปเขียนได้อย่างถูกต้อง ถ้าพร้อมแล้วเราไปเข้าสู่บทเรียนวันนี้กันเลยดีกว่า    

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

การอ่านบทร้อยแก้ว อ่านอย่างไรให้น่าฟัง

หลังจากที่เราได้เรียนรู้เรื่องการบทร้อยกรองไปแล้ว วันนี้เราจะมาพูดถึงบทร้อยแก้วกันบ้าง ซึ่งน้อง ๆ หลายคนคงจะรู้จักบทร้อยแก้วกันดีอยู่แล้ว เพราะเป็นสิ่งที่อยู่ในชีวิตประจำวัน แต่น้อง ๆ ทราบไหมคะว่า การอ่านบทร้อยแก้ว ก็มีวิธีอ่านที่ถูกต้องเหมือนกัน เพราะการที่เราอ่านไม่ถูกต้องนั้นก็อาจจะทำให้ไม่น่าฟัง น่าเบื่อ รวมไปถึงอาจทำให้ใจความที่ผู้แต่งต้องการจะสื่อสารคลาดเคลื่อนได้อีกด้วย ถ้าอยากรู้แล้วว่ามีหลักเกณฑ์และวิธีอ่านอย่างไร ไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ร้อยแก้วคืออะไร ?   บทข้อความทั่วๆ ไป ทั้งภาษาพูดและภาษาเขียน โดยต้องเขียนเป็นประโยค ข้อความติดต่อกัน

สมบัติของรูปสามเหลี่ยมมุมฉาก

สมบัติของรูปสามเหลี่ยมมุมฉาก

ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1