ความน่าจะเป็นกับการตัดสินใจ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความน่าจะเป็นกับการตัดสินใจ

บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐

ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้  แทนด้วย +2  และเงิน 3 บาทที่พีชจะต้องเสียเป็นผลตอบแทนที่เสีย  แทนด้วย -3

ค่าคาดหมาย  หมายถึง การนำความน่าจะเป็นของเหตุการณ์และผลตอบแทนของการเกิดเหตุการณ์นั้นมาพิจารณาประกอบกันในทางสถิติ ซึ่งหาได้จาก ผลรวมของผลคูณระหว่างความน่าจะเป็นของเหตุการณ์กับผลตอบแทนของเหตุการณ์

ตัวอย่างที่ 1 

ตัวอย่างที่ 1   ในงานเลี้ยงแห่งหนึ่งอานนท์และธีรเทพนั่งโต๊ะเดียวกัน ในระหว่างนั่งรออาหารนั้น  อานนท์หยิบเหรียญบาทออกมาสองเหรียญ  แล้วท้าพนันธีรเทพโดยมีกติกาว่า  ให้อานนท์โยนเหรียญ 2 เหรียญ  พร้อมกัน 1 ครั้ง ถ้าเหรียญที่โยนออกก้อยทั้งคู่แล้วอานนท์จะจ่ายให้ธีรเทพ 5 บาท แต่ถ้าเหรียญออกเป็นอย่างอื่นธีรเทพต้องจ่ายให้อานนท์ 3 บาท  ถ้ามีการพนันโยนเหรียญกันแบบนี้ไปเรื่อย ๆ หลาย ๆ ครั้ง  จงหาค่าคาดหมายที่ธีรเทพจะได้เงินในครั้งนี้  และคิดว่าใครจะได้เงินมากกว่ากัน

วิธีทำ     ในการโยนเหรียญบาทที่เที่ยงตรง 2 เหรียญพร้อมกัน 1 ครั้ง  ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้มี 4 แบบ คือ HH, TT, HT หรือ TH

ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกก้อยทั้งคู่ เท่ากับ  \frac{1}{4}

ความน่าจะเป็นของเหตุการณ์ที่เหรียญไม่ออกก้อยทั้งคู่ เท่ากับ  \frac{3}{4}

เนื่องจากแต่ละครั้งที่อานนท์โยนเหรียญ ถ้าเหรียญที่โยนออกเป็น TT อานนท์จะจ่ายเงินให้ธีรเทพ 5 บาท

ดังนั้น ผลตอบแทนของเหตุการณ์เป็นการที่ธีรเทพได้เงิน 5 บาท จึงแทนด้วย +5

เนื่องจากแต่ละครั้งที่โยนเหรียญ ถ้าเหรียญที่โยนไม่ออก TT ธีรเทพต้องจ่ายเงินให้อานนท์ 3 บาท

ดังนั้น ผลตอบแทนของเหตุการณ์เป็นการที่ธีรเทพเสียเงิน 3 บาท จึงแทนด้วย -3

การพนันโยนเหรียญหนึ่งครั้งค่าคาดหมายของธีรเทพ เป็นดังนี้

ค่าคาดหมาย =  (ผลตอบแทนที่ได้ × ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกก้อยทั้งคู่)                                                          + (ผลตอบแทนที่เสีย × ความน่าจะเป็นของเหตุการณ์ที่เหรียญไม่ออกก้อยทั้งคู่)

    = (5 × ¹⁄₄) + (-3 × ³⁄₄)

    = ⁵⁄₄ + (-9⁄₄)

    = -⁴⁄₄

    = -1

นั่นคือ ค่าคาดหมายของธีรเทพ เท่ากับ -1 บาท

แสดงว่า ถ้ามีการพนันโยนเหรียญกันแบบนี้ไปเรื่อย ๆ หลาย ๆ ครั้ง โดยเฉลี่ยธีรเทพเสียเงินครั้งละ 1 บาท หรือกล่าวได้ว่า อานนท์ได้เงินมากกว่าธีรเทพ

ตัวอย่างที่ 2

ตัวอย่างที่ 2   จากตัวอย่างที่ 1 ถ้าการพนันโยนเหรียญสองเหรียญ เปลี่ยนกติกาเป็นดังนี้ให้อานนท์โยนเหรียญ 2 เหรียญพร้อมกัน 1 ครั้ง ถ้าเหรียญที่โยนออกหัวทั้งคู่ แล้วธีรเทพจะจ่ายเงินให้อานนท์ 3 บาท แต่ถ้าเหรียญออกอย่างอื่น อานนท์ต้องจ่ายให้ธีรเทพ 1 บาท ถ้าโยนเหรียญไปเรื่อย ๆ หลาย ๆ ครั้งใครจะได้เงินมากกว่ากัน

วิธีทำ     การพนันโยนเหรียญหนึ่งครั้ง จะมีค่าคาดหมายของธีรเทพเปลี่ยนแปลงเป็นดังนี้

ค่าคาดหมาย = (ผลตอบแทนที่ได้ × ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวทั้งคู่)                                                            + (ผลตอบแทนที่เสีย × ความน่าจะเป็นของเหตุการณ์ที่เหรียญไม่ออกหัวทั้งคู่)

    = (1 × ³⁄₄) + (-3 × ¹⁄₄)

    = ³⁄₄ + (⁻³⁄₄)

    = 0

นั่นคือ ค่าคาดหมายของธีรเทพเท่ากับ 0 บาท

แสดงว่า  ถ้ามีการพนันโยนเหรียญกันแบบนี้ไปเรื่อย ๆ หลาย ๆ ครั้ง โดยเฉลี่ยทั้งอานนท์และธีรเทพจะเสมอตัว ไม่มีใครได้เงินมากกว่ากัน

ตัวอย่างที่ 3 

ตัวอย่างที่ 3   ในรายการเกมเศรษฐี  ลลิตาต้องตอบคำถามข้อสุดท้ายมี 4 ตัวเลือก หากตอบถูกจะได้เงิน 100,000 บาท ตอบผิดจะได้เงิน 5,000 บาท ถ้าไม่ตอบจะได้เงิน 10,000 บาท ลลิตาใช้ตัวช่วยหมดแล้ว และไม่ทราบคำตอบเลย  ถ้านักเรียนเป็นลลิตานักเรียนจะตอบคำถามหรือหยุดเล่น

วิธีทำ     ในการตอบคำถาม 4 ตัวเลือก 1 ข้อ จะมีข้อถูก 1 ข้อและข้อผิด 3 ข้อ

ความน่าจะเป็นของเหตุการณ์ที่จะตอบถูก  เท่ากับ  \frac{1}{4}

ความน่าจะเป็นของเหตุการณ์ที่จะตอบผิด  เท่ากับ \frac{3}{4}

เนื่องจาก ถ้าลลิตาตอบถูกลลิตาจะได้เงิน 100,000 บาท

ดังนั้น ผลตอบแทนของเหตุการณ์ที่ลลิตาได้เงิน 100,000 บาท จึงแทนด้วย +100000

เนื่องจาก ถ้าลลิตาตอบผิดลลิตาจะเสียเงิน 5,000 บาท

ดังนั้น ผลตอบแทนของเหตุการณ์ที่ลลิตาเสียเงิน 5000 บาท จึงแทนด้วย -5000

เนื่องจาก ถ้าลลิตาไม่ตอบลลิตาจะได้เงิน 10,000 บาท

ดังนั้น ผลตอบแทนของเหตุการณ์ที่ลลิตาได้เงิน 10,000 บาท จึงแทนด้วย +10000

การตอบคำถามข้อสุดท้าย ค่าคาดหมายของลลิตา เป็นดังนี้

ค่าคาดหมาย  = (ผลตอบแทนที่ได้ × ความน่าจะเป็นของเหตุการณ์ที่จะตอบคำถามถูก)                                                              + (ผลตอบแทนที่เสีย × ความน่าจะเป็นของเหตุการณ์ที่ตอบคำถามผิด)

    = (100,000 × ¹⁄₄) + (-5,000 × ³⁄₄)

    = ¹⁰⁰⁰⁰⁰⁄₄ + (⁻¹⁵⁰⁰⁰⁄₄)

    = ⁸⁵⁰⁰⁰⁄₄

    = 21,250

นั่นคือ ค่าคาดหมายของลลิตา เท่ากับ 21,250 บาท

แสดงว่า ลลิตาควรเล่นต่อไป

ตัวอย่างที่ 4 

ตัวอย่างที่ 4  แป้นวงกลมปาเป้าผู้เล่นจะเสียค่าเล่นครั้งละ  20 บาท  โดยมีรางวัล  ดังนี้

เป้า ความน่าจะเป็นกับการตัดสินใจ

ถ้าปาโดนหมายเลข 1 จะไม่ได้รับเงิน

ถ้าปาโดนหมายเลข 2 จะได้รับเงิน 100 บาท

ถ้าพิมพ์เล่นแป้นวงกลมปาเป้า จงหาว่าแต่ละครั้งที่พิมพ์เล่นมีค่าคาดหมายที่จะได้รับเงินเป็นเท่าใด

วิธีทำ     จำนวนผลลัพธ์ที่เป็นไปได้ทั้งหมดเท่ากับ 8

จำนวนเหตุการณ์ที่จะปาเป้าโดนหมายเลข  1 เท่ากับ 6

ความน่าจะเป็นที่พิมพ์จะปาเป้าโดนหมายเลข 1 เท่ากับ ⁶⁄₈ = ³⁄₄

จำนวนเหตุการณ์ที่จะปาเป้าโดนหมายเลข 2 เท่ากับ 2

ความน่าจะเป็นที่พิมพ์จะปาเป้าโดนหมายเลข 2 เท่ากับ ²⁄₈ = ¹⁄₄

ผลตอบแทนที่ได้เท่ากับ 100

ผลตอบแทนที่เสียเท่ากับ -20

ค่าคาดหมาย  = (ผลรวมของผลคูณระหว่างความน่าจะเป็นของเหตุการณ์กับผลตอบแทนของเหตุการณ์)

    = (¹⁄₄ × 100) + (³⁄₄ × (-20)

                         = ¹⁰⁰⁄₄ – ⁶⁰⁄₄

                            = 25 – 15

     = 10

               ดังนั้น พิมพ์เล่นแป้นวงกลมปาเป้า พิมพ์มีค่าคาดหมายที่จะได้รับเงิน เท่ากับ 10

ตัวอย่างที่ 5

ตัวอย่างที่ 5  ในการจัดงานวัดแห่งหนึ่ง  พ่อค้าได้นำวงล้อเสี่ยงโชคเพื่อการกุศล มีตัวเลข 1 – 8 เรียงกันตามช่องที่แบ่งเท่ากันบนแป้นวงกลม  และมีลูกศรชี้ช่องตัวเลข ดังรูป มาให้ลูกค้าหมุนเสี่ยงโชค  โดยมีกติกาว่า ถ้าลูกค้าหมุนเสี่ยงโชคหนึ่งครั้ง ถ้าลูกศรชี้ที่ตัวเลข 2 หรือ 4 แล้ว ทางพ่อค้าจะจ่ายเงินให้ลูกค้า 100 บาท และแต่ละครั้งที่หมุนวงล้อ ลูกค้าต้องจ่ายเงินซื้อตั๋วหนึ่งใบราคา 50 บาท ถ้ามดดำซื้อตั๋วหมุนวงล้อเสี่ยงโชคหนึ่งใบ จงตอบคำถามต่อไปนี้

ความน่าจะเป็นกับการตัดสินใจ เป้า 2

1) ความน่าจะเป็นของเหตุการณ์ที่มดดำจะได้รับรางวัลเป็นเท่าไร

2) ความน่าจะเป็นของเหตุการณ์ที่มดดำจะไม่ได้รับรางวัลเป็นเท่าไร

3) การหมุนวงล้อเสี่ยงโชคหนึ่งครั้ง ค่าคาดหมายที่มดดำจะได้เงินเป็นเท่าไร และหมายความว่าอย่างไร จงอธิบาย

วิธีทำ    1) ความน่าจะเป็นของเหตุการณ์ที่มดดำจะได้รับรางวัลเป็นเท่าไร

ในการหมุนวงล้อเสี่ยงโชคหนึ่งครั้ง  ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้มี 8 แบบ คือ 1, 2, 3, 4, 5, 6, 7 , 8

ความน่าจะเป็นของเหตุการณ์ที่มดดำจะได้รับรางวัล  เท่ากับ ²⁄₈  หรือ ¹⁄₄ 

     2) ความน่าจะเป็นของเหตุการณ์ที่มดดำจะไม่ได้รับรางวัลเป็นเท่าไร

     ความน่าจะเป็นของเหตุการณ์ที่มดดำจะไม่ได้รับรางวัล  เท่ากับ ⁶⁄₈  หรือ ³⁄₄

     3) การหมุนวงล้อเสี่ยงโชคหนึ่งครั้ง ค่าคาดหมายที่มดดำจะได้เงินเป็นเท่าไร และหมายความว่าอย่างไรจงอธิบาย

               เนื่องจาก ถ้ามดดำหมุนเสี่ยงโชคชี้ที่ตัวเลข 2 หรือ 4 มดดำจะได้เงิน 100 บาท

     ดังนั้น ผลตอบแทนของเหตุการณ์ที่มดดำได้เงิน 100 บาท จึงแทนด้วย +100

     เนื่องจาก ถ้ามดดำหมุนเสี่ยงโชคชี้ที่ตัวเลข 1, 3, 5,6,7 และ 8 มดดำไม่ต้องเสียเงิน

     ดังนั้น ผลตอบแทนของเหตุการณ์ที่มดดำไม่ต้องเสียเงิน จึงแทนด้วย 0

               ค่าคาดหมาย = (ผลตอบแทนที่ได้ × ความน่าจะเป็นของเหตุการณ์ที่ได้รับรางวัล)

                                          + (ผลตอบแทนที่เสีย × ความน่าจะเป็นของเหตุการณ์ที่ไม่ได้รับรางวัล)

                  = (100 × ¹⁄₄) + (0 × ³⁄₄

                  = ¹⁰⁰⁄₄

                                            = 25

     ดังนั้น ค่าคาดหมายของมดดำ เท่ากับ 25 บาท

     เนื่องจากในการซื้อตั๋วหมุนวงล้อเสี่ยงโชค 1 ใบ ราคา 50 บาท มีค่าคาดหมายที่จะได้เงิน 25 บาท     แสดงว่ามดดำเสียเปรียบอยู่ 50 – 25 = 25 บาท

     นั่นคือ ถ้ามดดำซื้อตั๋วหมุนวงล้อเสี่ยงโชคหลาย ๆ ใบ โดยเฉลี่ยแล้วแต่ละใบมดดำจะเสียเปรียบ หรือพ่อค้าได้กำไร

เมื่อน้องๆเรียนรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ จะทำให้น้องๆสามารถนำความรู้ไปใช้ในการตัดสินใจในเหตุการณ์ต่างๆ ได้เป็นอย่างดี

วิดีโอ ความน่าจะเป็นกับการตัดสินใจ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y   ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

สัจนิรันดร์

ในบทความจะเขียนเกี่ยวกับวิธีการพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ ซึ่งจะเน้นให้น้องๆเข้าใจหลักการของการพิสูจน์ สิ่งที่น้องจะได้จากบทความนี้คือ น้องจะสามารถพิสูจน์การเป็นสัจนิรันดร์ของประพจน์ได้และหากน้องๆขยันทำโจทย์บ่อยๆจะทำให้น้องวิเคราะห์โจทย์เกี่ยวกับสัจนิรันดร์ได้ง่ายขึ้นแน่นอนค่ะ

ประโยคความเดียวและประโยคความรวมในภาษาอังกฤษ

  สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน เจอกันอีกแล้วจร้ากับไวยากรณ์การเขียนภาษาอังกฤษและวันนี้ครูจะพาไปดูเทคนิคการการใช้ประโยคความเดียว และประโยคความรวมในภาษาอังกฤษกันค่ะ ซึ่งเป็นไม้เบื่อไม้เมามากกับคนที่ไม่ชอบเขียน  ครูเอาใจช่วยทุกคนค่า ไปลุยกันเลย 3 โครงสร้างประโยคในภาษาอังกฤษ การจะเป็นประโยคสมบูรณ์ได้นั้น ประโยคจะต้องประกอบไปด้วย 3 ส่วนสำคัญดังนี้ กริยา หรือ verb (ภาคขยาย) ภาคขยาย จะมีหรือไม่มีก็ได้ การใส่ภาคขยายเข้ามาเพื่อให้ประโยคสมบูรณ์ยิ่งขึ้น ประธาน subject  + กริยา หรือ

past simple tense

Past Simple Tense

สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาพูดถึงเรื่อง Past Simple Tense ในภาษาอังกฤษ จะเป็นอย่างไรลองไปดูกันเลยดีกว่าครับ

Imperative for Advice

Imperative for Advice: การให้คำแนะนำ

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนเรื่องง่ายๆ อย่าง Imperative for Advice กัน จะง่ายขนาดไหนเราลองไปดูกันเลยครับ

ราชาศัพท์

ราชาศัพท์ คำใดบ้างที่เราควรรู้?

น้อง ๆ หลายคนคงจะเคยได้ยินคำราชาศัพท์มาบ้างเวลาที่เปิดโทรทัศน์ดูข่าวช่วงหัวค่ำ แต่เคยสงสัยกันบ้างไหมคะว่า ราชาศัพท์ ที่นักข่าวในโทรทัศน์พูดกันบ่อย ๆ มีความหมายว่าอะไรบ้าง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เกี่ยวกับคำราชาศัพท์ เพื่อที่เวลาน้อง ๆ ฟังข่าว จะได้เข้าใจได้ง่ายมากขึ้น เราไปเรียนรู้พร้อมกันเลยค่ะ   ราชาศัพท์     การแบ่งลำดับขั้นของบุคคลในการใช้คำราชาศัพท์ แบ่งออกได้เป็น 5 ระดับ ดังนี้

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1