การแก้สมการกำลังสอง

การแก้สมการกำลังสอง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง สามารถทำได้โดยการ แยกตัวประกอบพหุนามกำลังสอง และใช้สูตร เราแก้สมการเพื่อหาคำตอบหรือหาค่าของตัวแปร

ในบทความนี้พี่จะพูดถึงสมการกำลังสองตัวแปรเดียว ซึ่งอยู่ในรูป ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0

ตัวอย่างสมการกำลังสองตัวแปรเดียว 

1.) x² + 3x +5 = 0

จะได้ว่า a = 1 , b = 3, c = 5

2.) 2x² + 5x +  1 = 0

จะได้ว่า a = 2 , b = 5 , c = 1

3.) x² + 7x = 3

เมื่อ บวกด้วย บวกเข้าด้วย -3 ทั้งสองข้างของสมการ จะได้ x² + 7x + (-3)= 3+(-3) ดังนั้น x² + 7x – 3 = 0

จะได้ว่า a = 1, b = 2, c = -3

การแก้สมการกำลังสองโดยการแยกตัวประกอบ

สมมติว่าแยกตัวประกอบพหุนามได้เป็น (x + d)(x + e) = 0 เราสามารถสรุปได้ว่า x + d = 0 หรือ x + e = 0 โดยที่ d และ e เป็นค่าคงตัว

สมการกำลังสองจะมีจำนวนคำตอบได้ไม่เกิน 2 คำตอบ

เช่น

(x – 5)(x + 2) = 0 ดังนั้น x -5 = 0 ⇒ x = 5 หรือ x +2 = 0 ⇒ x = -2

(2x + 3)(3x + 6) = 0 ดังนั้น 2x +3 = 0 ⇒ x = -\frac{3}{2} หรือ x + 2 = 0 ⇒ x = -2

ทำไมถึงรู้ว่า ในวงเล็บเท่ากับ 0 ???

ลองพิจารณา (x – 5)(x + 2) = 0

ให้ a แทน x – 5

b แทน x + 2 

จะได้ว่า ab = 0 เราลองคิดง่ายๆเลย จำนวนที่คูณกันแล้วจะได้ 0 ต้องมีตัวใดตัวหนึ่งเป็น 0 แสดงว่าไม่ a ก็ b ต้องเท่ากับ 0 หรืออาจจะเป็น 0 ทั้ง a และ b

ดังนั้นเราจึงได้ว่า ab = 0 แล้ว a = 0 หรือ b = 0

นั่นคือ x – 5 = 0 หรือ x + 2 = 0

การใช้สูตร การแก้สมการกำลังสอง

ให้ ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0

สูตรที่เราจะใช้ในการแก้สมการกำลังคือ  การแก้สมการกำลังสอง

ข้อดีของการใช้สูตรเราสามารถรู้ได้ว่า สมการนั้นมีจำนวนคำตอบเท่าใด โดยพิจารณา การแก้สมการกำลังสอง

b^2-4ac > 0 แสดงว่าสมการมี 2 คำตอบ

b^2-4ac= 0 แสดงว่าสมการมี 1 คำตอบ

b^2-4ac< 0 แสดงว่าไม่มีคำตอบของสมการที่เป็นจำนวนจริง (หมายความว่ามีคำตอบแต่คำตอบนั้นไม่ใช่จำนวนจริง)

 

เราสามารถตรวจคำตอบของสมการได้ โดยการนำคำตอบที่ได้ แทนค่าลงไปใน x ถ้าสมการเป็นจริงแสดงว่า “คำตอบถูกต้อง”

 

ตัวอย่าง

x² + 3x +5 = 0

การแก้สมการกำลังสอง

เนื่องจาก b^2-4ac = -11 ซึ่งน้อยกว่า 0 ดังนั้น x ไม่มีคำตอบในจำนวนจริง

ตัวอย่าง

 

1.) x² + 3x -10 = 0

วิธีทำ การแก้สมการกำลังสอง

 

2.) 10x² – 7x -12 = 0

วิธีทำ การแก้สมการกำลังสอง

 

3.) x² + 3x +3 = 0

วิธีทำ 

การแก้สมการกำลังสอง

4.) (x -2)² = 0

วิธีทำ 

การแก้สมการกำลังสอง

 

5.) พิจารณาสมการต่อไปนี้ว่ามีกี่คำตอบ

5.1) x² + 9x + 1 = 0

การแก้สมการกำลังสอง

 

5.2) x² + 10x + 25 = 0

การแก้สมการกำลังสอง

5.3) x² + 2x + 10 = 0

การแก้สมการกำลังสอง

 

วีดิโอการแก้สมการกำลังสอง

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ

จำนวนเฉพาะและตัวประกอบเฉพาะ บทความนี้จะทำให้น้องๆ รู้จัก จำนวนเฉพาะและตัวประกอบเฉพาะ  น้องๆหลายคนคุ้นเคยกับจำนวนเฉพาะมาบ้างแล้ว แต่น้องๆทราบหรือไม่ว่า ตัวประกอบเฉพาะคืออะไร ซึ่งน้องๆจะได้เรียนรู้จากตัวอย่างที่ได้รวบรวมไว้ในบทความนี้ โดยได้นำเสนออกมาในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นประถมศึกษาปีที่ 6  ก่อนอื่นเรามาทำความเข้าใจกับความหมายของ ตัวประกอบ  ตัวประกอบของจำนวนเต็มใด ๆ  คือ จำนวนที่หารจำนวนนั้นได้ลงตัว  ถ้าจำนวนที่ 2 หารได้ลงตัว เรียกว่า จำนวนคู่  ส่วนจำนวนที่

เรขาคณิตสามมิติ

เรขาคณิตสามมิติ

ในบทความนี้เราจะได้เรียนรู้กับรูปเรขาคณิตสามมิติและส่วนประกอบต่างๆ เพื่อนำไปประยุกต์ใช้ในชีวิตประจำวันได้อย่างถูกต้อง

การใช้ There is และ There are ในประโยคคำถาม

สวัสดีค่ะนักเรียนชั้น ม.2 ที่รักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ There is There are ในประโยคคำถาม ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ   There is/There are คืออะไร   There is และ There are แปลว่า

แบบฝึกหัดความสัมพันธ์

แบบฝึกหัดความสัมพันธ์ แบบฝึกหัดความสัมพันธ์ เป็นการทบทวนเนื้อหาเกี่ยวกับความสัมพันธ์ ได้แก่ เรื่องโดเมนและเรนจ์ของความสัม กราฟของความสัมพันธ์ และตัวผกผันของความสัมพันธ์ ก่อนทำแบบฝึกหัดความสัมพันธ์ บทความที่น้องๆควรรู้ คือ โดเมนของความสัมพันธ์ เรนจ์ของความสัมพันธ์ กราฟของความสัมพันธ์ ตัวผกผันของความสัมพันธ์   แบบฝึกหัด 1.) ถ้า (x, 5) = (3, x – y)

การอ้างเหตุผล

บทความนี้จะทำให้น้องๆเข้าใจหลักการอ้างเหตุผลมากขึ้นและสามารถตรวจสอบได้ว่า การอ้างเหตุผล สมเหตุสมผลหรือไม่

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล   แบบฝึกหัดการให้เหตุผล ประกอบไปด้วยการให้เหตุผลแบบอุปนัยและการให้เหตุผลแบบนิรนัย ซึ่งแบบฝึกหัดนี้จะช่วยให้น้องๆได้ฝึกฝนการทำโจทย์จนน้องๆเชี่ยวชาญและส่งผลให้น้องๆทำข้อสอบได้แบบไม่ผิดพลาด ถ้าเรารู้เฉยๆเราอาจจะทำข้อสอบได้แต่การที่เราฝึกทำโจทย์ด้วยจะทำให้เราทำข้อสอบได้แน่นอนค่ะ แบบฝึกหัดเพิ่มเติมและข้อสอบ O-Net ตัวอย่างต่อไปนี้เป็นข้อสอบ O-Net ของปีก่อนๆ   1.) พิจารณาการอ้างเหตุผลต่อไปนี้ ก. เหตุ 1. ถ้าฝนไม่ตกแล้วเดชาไปโรงเรียน   2. ฝนตก      ผล   

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1