การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐

สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x + 3y – 15 = 0, x + y – 1 = 0, x – 2y = 3   เป็นต้น

รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร

เรียก y = ax + b ว่า รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร ซึ่งอาจเขียนในรูป y = mx + b โดยที่  a หรือ m  คือ ความชันของเส้นตรง

1. เมื่อ m > 0         กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมแหลมกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

ความชันของกราฟเส้นตรง 01

2. เมื่อ m < O        กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมป้านกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

มุมป้าน ความชันของกราฟเส้นตรง 01

3. เมื่อ m = 0            กราฟจะมีลักษณะเป็นเส้นตรงที่ขนานกับแกน X

ขนานแกน X ระบบสมการเชิงเส้นสองตัวแปร 03

รูปทั่วไปของสมการเชิงเส้นสองตัวแปร  คือ Ax + By + C = 0  เมื่อ x, y เป็นตัวแปร และ A, B, C  เป็นค่าคงตัว  โดยที่ A และ B  ไม่เท่ากับศูนย์พร้อมกัน กราฟของสมการนี้จะเป็นเส้นตรง เรียกว่า กราฟเส้นตรง

กราฟของระบบสมการเชิงเส้นสองตัวแปร

กราฟของระบบสมการจะมีลักษณะ ดังนี้

  1. กราฟของสมการทั้งสองตัดกันที่จุดจุดหนึ่ง ซึ่งจุดนั้นจะเป็นคำตอบของระบบสมการ โดยแสดงค่าของ x และ y ดังรูป

ระบบสมการเชิงเส้นสองตัวแปร 1

2. กราฟของสมการทั้งสองขนานกัน ซึ่งไม่มีคำตอบของระบบสมการ

ระบบสมการเชิงเส้นสองตัวแปร 2

  1. กราฟของสมการทั้งสองทับกันเป็นเส้นตรงเดียวกัน ซึ่งคำตอบของระบบสมการมีมากมายหลายคำตอบ โดยค่าของ x และ y ที่อยู่บนเส้นตรงนั้น

ระบบสมการเชิงเส้นสองตัวแปร 3

การใช้กราฟหาคำตอบของระบบสมการเชิงเส้นสองตัวแปร

ตัวอย่างที่ 1  จงหาคำตอบของระบบสมการต่อไปนี้โดยใช้กราฟ พร้อมทั้งระบุว่าระบบสมการนั้น มี 1 คำตอบ  มีหลายคำตอบ  หรือไม่มีคำตอบ

1)  2x + y = 11

y – x = 8

วิธีทำ    2x + y = 11   ⇒    y = 11 – 2x   

y – x = 8    ⇒    y = 8 + x 

จาก   y = 11 – 2x

แทน x = 2 จะได้  y = 11 – 2(2) = 11 – 4 = 7         (2,7)

แทน x = 0 จะได้  y = 11 – 2(0) = 11 – 0 = 11       (0,11)

แทน x = -2 จะได้  y = 11 – 2(-2) = 11 + 4 = 15    (-2,15)

จาก   y = 8 + x 

แทน x = 2 จะได้  y = 8 + 2 = 10     (2,10)

แทน x = 0 จะได้    y = 8 + 0 = 8    (0,8)

แทน x = -2 จะได้    y = 8 – 2 = 6  ⇒  (-2,6)

ระบบสมการเชิงเส้นสองตัวแปร 4

จะเห็นว่า กราฟของระบบสมการตัดกันที่จุด (1,9)

ดังนั้น คำตอบของระบบสมการมี 1 คำตอบ คือ (1,9)

2) 2y 4x   = 6

x − 2y = 4

วิธีทำ    2y 4x   = 6   ⇒    y = (6 + 4x) ÷ 2 = 3 + 2x

x − 2y = 4  ⇒    y = 4 + 2x

จาก   y = 3 + 2x

แทน x = 1 จะได้  y = 3 + 2(1) = 3 + 2 = 5      (1,5)

แทน x = 0 จะได้   y = 3 + 2(0) = 3 + 0 = 3    (0,3)

แทน x = -1 จะได้   y = 3 + 2(-1) = 3 – 2 = 1    (-1,1)

จาก   y = 4 + 2x

แทน x = 1  จะได้   y = 4 + 2(1) = 4 + 2 = 6     (1,6)

แทน x = 0  จะได้    y = 4 + 2(0) = 4 + 0 = 4     (0,4)

แทน x = -1  จะได้   y = 4 + 2(-1) = 4 – 2 = 2     (-1,2)

ระบบสมการเชิงเส้นสองตัวแปร 5

จะเห็นว่า กราฟทั้งสองขนานกัน จึงไม่มีโอกาสตัดกัน

ดังนั้น ระบบสมการไม่มีคำตอบ

3)  x – y = 5

y – x  = -5

วิธีทำ     x – y = 5  ⇒    y = x – 5

y – x  = -5   ⇒   y = -5 + x

จาก   y = x – 5

แทน x = 1 จะได้  y = 1 – 5 = -4    (1,-4)

แทน x = 0 จะได้  y = 0 – 5 = -5    (0,-5)

แทน x = -1 จะได้ y = -1 – 5 = -6    (-1,-6)

จาก  y = -5 + x

แทน x = 1  จะได้   y = -5 + 1 = -4     (1,-4)

แทน x = 0  จะได้  y = -5 + 0 = -5     (0,-5)

แทน x = -1  จะได้  y = -5 – 1 = -6     (-1,-6)

ระบบสมการเชิงเส้นสองตัวแปร 6

จะเห็นว่า กราฟทั้งสองทับกันสนิท

ดังนั้น ระบบสมการมีหลายคำตอบ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ารแก้ระบบสมการเชิงเส้นสองตัวแปรโดยใช้ อาจไม่สะดวกมากนัก เนื่องจากเสียเวลามาก และในบางครั้งคำตอบที่ได้จากกราฟ อาจพิจารณาหาคำตอบได้ยากอาจมีความคลาดเคลื่อนได้บ้าง จึงต้องอาศัยวิธีการอื่นในการแก้ระบบสมการเชิงเส้นสองตัวแปร ซึ่งจะได้เรียนในลำดับถัดไป

วิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ความสัมพันธ์

ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

กาพย์ห่อโคลงประพาสธารทองแดง

กาพย์ห่อโคลงประพาสธารทองแดง ที่มาของวรรณคดีเชิงสารคดี

กาพย์ห่อโคลงประพาสธารทองแดง มีมาตั้งแต่สมัยอยุธยา เป็นวรรณคดีที่สำคัญในฐานะสารคดี เหตุใดจึงเป็นเช่นนั้น บทเรียนในวันนี้จะพาน้อง ๆ ไปหาคำตอบของวรรณคดีเรื่องดังกล่าวว่ามีประวัติความเป็นมาอย่างไร ใครเป็นผู้แต่ง พร้อมเรียนรู้ความหมายของกาพย์ห่อโคลงและเนื้อเรื่องโดยสรุปของเรื่องด้วย ไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ความเป็นมาของ กาพย์ห่อโคลงประพาสธารทองแดง     กาพย์ห่อโคลงประพาสธารทองแดงเป็นบทชมธรรมชาติที่แต่งเพื่อความเพลิดเพลินระหว่างการเดินทางของกระบวนเสด็จทางสถลมารคจากท่าเจ้าสนุกถึงธารทองแดง ซึ่งธารทองแดงในที่นี้ เป็นชื่อลำน้ำที่เขาพระพุทธบาท ซึ่งเป็นบริเวณที่ตั้งของพระตำหนักธารเกษมที่มีมาตั้งแต่สมัยสมเด็จพระเจ้าปราสาททอง โดยเจ้าฟ้าธรรมธิเบศรทรงพระนิพนธ์วรรณคดีเรื่องนี้ขึ้นเมื่อครั้งตามเสด็จสมเด็จพระเจ้าอยู่หัวบรมโกศไปนมัสการพระพุทธบาท ที่จังหวัดสระบุรี   ประวัติเจ้าฟ้าธรรมธิเบศร   เจ้าฟ้าธรรมธิเบศร

อยากเขียนเก่ง เขียนได้ดี ต้องเรียนรู้วิธีใช้ภาษาเขียนให้ถูกต้อง

บทนำ สวัสดีน้อง ๆ ทุกคน สำหรับวันนี้เราจะมาเข้าสู่บทเรียนภาษาไทยในเรื่องของระดับภาษา แต่จะเฉพาะเจาะจงไปที่การใช้ภาษาเขียนให้ถูกต้อง เหมาะสม เพื่อให้น้อง ๆ ทุกคนนำไปใช้ในการเขียนข้อสอบ หรือเขียนรายงานเรื่องต่าง ๆ ได้เหมาะสมมากขึ้น เพราะด้วยความที่ภาษาเขียนเป็นภาษาที่มีแบบแผน มีหลักในการเลือกใช้ เราจึงจำเป็นต้องเรียนรู้ภาษาเขียนอย่างละเอียด ถ้าน้อง ๆ ทุกคนอยากรู้แล้วว่าวันนี้มีบทเรียนอะไรที่น่าสนใจบ้างต้องมาดูไปพร้อม ๆ กัน   ภาษาเขียน คืออะไร?  

ารบวก-ลบ-คูณ-หารจำนวนเต็ม

การบวก ลบ คูณ หารจำนวนเต็ม

บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง การบวก ลบ คูณ หารจำนวนเต็ม มากยิ่งขึ้น ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลายและอธิบายไว้อย่างละเอียด โดยก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง จำนวนตรงข้าม และ ค่าสัมบูรณ์ เพื่อใช้ในการบวก ลบ จำนวนเต็ม ซึ่งมีวิธีการดังตัวอย่างต่อไปนี้ การบวกจำนวนเต็ม การบวกจำนวนเต็มบวก โดยใช้ค่าสัมบูรณ์ ให้น้องๆทบทวนการหาค่าสัมบูรณ์ ดังนี้ |-12|=   12 |4|=   4

การใช้คำคุณศัพท์และการเรียงคำคุณศัพท์

การใช้คำคุณศัพท์และการเรียงคำคุณศัพท์ คำคุณศัพท์ (Adjective) คืออะไร? ก่อนเราจะเริ่มเข้าเนื้อหา ทางผู้เขียนก็อยากจะพูดถึงความหมายและความสำคัญของคำคุณศัพท์ (Adjective) กันก่อน คำคุณศัพท์ (Adjectives) มักจะุถูกใช้ในการอธิบายลักษณะรูปร่างทางกายภาพของทั้งสิ่งของและสิ่งมีชีวิตที่รวมถึงตัวของมนุษย์เอง โดยที่เราจะมาเรียนกันวันนี้คือการที่บางครั้ง คำคุณศัพท์ (Adjective) นั้นจะมีลักษณะที่ถูกใช้อธิบายลักษณะทางกายภาพที่มากกว่าหนึ่งอย่าง ในภาษาไทยของเรา ก็มีการเรียกคำคุณศัพท์ หรือที่เรียกว่า order of adjective ด้วยเหมือนกัน จากศึกษาและพูดคุยกับนักศึกษาศาสตร์ พบว่า การใช้ภาษาไทยในปัจจุบันไม่ได้มีการกำหนดการเรียงลำดับคำคุณศัพท์แบบภาษาอังกฤษที่ชัดเจน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1