การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐

สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x + 3y – 15 = 0, x + y – 1 = 0, x – 2y = 3   เป็นต้น

รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร

เรียก y = ax + b ว่า รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร ซึ่งอาจเขียนในรูป y = mx + b โดยที่  a หรือ m  คือ ความชันของเส้นตรง

1. เมื่อ m > 0         กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมแหลมกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

ความชันของกราฟเส้นตรง 01

2. เมื่อ m < O        กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมป้านกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

มุมป้าน ความชันของกราฟเส้นตรง 01

3. เมื่อ m = 0            กราฟจะมีลักษณะเป็นเส้นตรงที่ขนานกับแกน X

ขนานแกน X ระบบสมการเชิงเส้นสองตัวแปร 03

รูปทั่วไปของสมการเชิงเส้นสองตัวแปร  คือ Ax + By + C = 0  เมื่อ x, y เป็นตัวแปร และ A, B, C  เป็นค่าคงตัว  โดยที่ A และ B  ไม่เท่ากับศูนย์พร้อมกัน กราฟของสมการนี้จะเป็นเส้นตรง เรียกว่า กราฟเส้นตรง

กราฟของระบบสมการเชิงเส้นสองตัวแปร

กราฟของระบบสมการจะมีลักษณะ ดังนี้

  1. กราฟของสมการทั้งสองตัดกันที่จุดจุดหนึ่ง ซึ่งจุดนั้นจะเป็นคำตอบของระบบสมการ โดยแสดงค่าของ x และ y ดังรูป

ระบบสมการเชิงเส้นสองตัวแปร 1

2. กราฟของสมการทั้งสองขนานกัน ซึ่งไม่มีคำตอบของระบบสมการ

ระบบสมการเชิงเส้นสองตัวแปร 2

  1. กราฟของสมการทั้งสองทับกันเป็นเส้นตรงเดียวกัน ซึ่งคำตอบของระบบสมการมีมากมายหลายคำตอบ โดยค่าของ x และ y ที่อยู่บนเส้นตรงนั้น

ระบบสมการเชิงเส้นสองตัวแปร 3

การใช้กราฟหาคำตอบของระบบสมการเชิงเส้นสองตัวแปร

ตัวอย่างที่ 1  จงหาคำตอบของระบบสมการต่อไปนี้โดยใช้กราฟ พร้อมทั้งระบุว่าระบบสมการนั้น มี 1 คำตอบ  มีหลายคำตอบ  หรือไม่มีคำตอบ

1)  2x + y = 11

y – x = 8

วิธีทำ    2x + y = 11   ⇒    y = 11 – 2x   

y – x = 8    ⇒    y = 8 + x 

จาก   y = 11 – 2x

แทน x = 2 จะได้  y = 11 – 2(2) = 11 – 4 = 7         (2,7)

แทน x = 0 จะได้  y = 11 – 2(0) = 11 – 0 = 11       (0,11)

แทน x = -2 จะได้  y = 11 – 2(-2) = 11 + 4 = 15    (-2,15)

จาก   y = 8 + x 

แทน x = 2 จะได้  y = 8 + 2 = 10     (2,10)

แทน x = 0 จะได้    y = 8 + 0 = 8    (0,8)

แทน x = -2 จะได้    y = 8 – 2 = 6  ⇒  (-2,6)

ระบบสมการเชิงเส้นสองตัวแปร 4

จะเห็นว่า กราฟของระบบสมการตัดกันที่จุด (1,9)

ดังนั้น คำตอบของระบบสมการมี 1 คำตอบ คือ (1,9)

2) 2y 4x   = 6

x − 2y = 4

วิธีทำ    2y 4x   = 6   ⇒    y = (6 + 4x) ÷ 2 = 3 + 2x

x − 2y = 4  ⇒    y = 4 + 2x

จาก   y = 3 + 2x

แทน x = 1 จะได้  y = 3 + 2(1) = 3 + 2 = 5      (1,5)

แทน x = 0 จะได้   y = 3 + 2(0) = 3 + 0 = 3    (0,3)

แทน x = -1 จะได้   y = 3 + 2(-1) = 3 – 2 = 1    (-1,1)

จาก   y = 4 + 2x

แทน x = 1  จะได้   y = 4 + 2(1) = 4 + 2 = 6     (1,6)

แทน x = 0  จะได้    y = 4 + 2(0) = 4 + 0 = 4     (0,4)

แทน x = -1  จะได้   y = 4 + 2(-1) = 4 – 2 = 2     (-1,2)

ระบบสมการเชิงเส้นสองตัวแปร 5

จะเห็นว่า กราฟทั้งสองขนานกัน จึงไม่มีโอกาสตัดกัน

ดังนั้น ระบบสมการไม่มีคำตอบ

3)  x – y = 5

y – x  = -5

วิธีทำ     x – y = 5  ⇒    y = x – 5

y – x  = -5   ⇒   y = -5 + x

จาก   y = x – 5

แทน x = 1 จะได้  y = 1 – 5 = -4    (1,-4)

แทน x = 0 จะได้  y = 0 – 5 = -5    (0,-5)

แทน x = -1 จะได้ y = -1 – 5 = -6    (-1,-6)

จาก  y = -5 + x

แทน x = 1  จะได้   y = -5 + 1 = -4     (1,-4)

แทน x = 0  จะได้  y = -5 + 0 = -5     (0,-5)

แทน x = -1  จะได้  y = -5 – 1 = -6     (-1,-6)

ระบบสมการเชิงเส้นสองตัวแปร 6

จะเห็นว่า กราฟทั้งสองทับกันสนิท

ดังนั้น ระบบสมการมีหลายคำตอบ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ารแก้ระบบสมการเชิงเส้นสองตัวแปรโดยใช้ อาจไม่สะดวกมากนัก เนื่องจากเสียเวลามาก และในบางครั้งคำตอบที่ได้จากกราฟ อาจพิจารณาหาคำตอบได้ยากอาจมีความคลาดเคลื่อนได้บ้าง จึงต้องอาศัยวิธีการอื่นในการแก้ระบบสมการเชิงเส้นสองตัวแปร ซึ่งจะได้เรียนในลำดับถัดไป

วิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ม.3 สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สวัสดีค่ะนักเรียนชั้นม. 3 ที่น่ารักทุกคน วันนี้ครูจะพาไปตะลุย “สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ พร้อมทั้งเทคนิคการพูดตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า สำนวนการเสนอ   ในชีวิตประจำวันของเรานั้น ล้วนจะต้องเจอกลุ่มประโยคคำถามในเชิงชักชวน และการเสนอแนะที่ใช้เป็นรูปแบบคำถามนั้นถือเป็นการเสนอแนะชักชวนทางอ้อม ถ้าเทียบกับนิสัยคนไทยแล้ว ก็เพื่อแสดงถึงความเกรงใจ ไม่พูดมาตรงๆ เพื่อจุดประสงคืบางอย่าง ซึ่งเป็นนิสัยที่คนไทยส่วนใหญ่มีอยู่แล้ว ในภาษาอังกฤษการใช้ภาษาเหล่านี้จะทำให้การสนทนาดูเป็นธรรมชาติและคล่องมากขึ้น โดยที่บางครั้งผู้ถามนั้นหว่านล้อมผู้ฟังด้วยการ ชวนให้ทำ หรือแนะนำให้ทำนั่นเอง ประโยคคำถามที่ใช้มีดังนี้  

M3 Past Passive

Past Passive คืออะไร

Hi guys! สวัสดีค่ะนักเรียนชั้นม.3 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   Past Passive คืออะไร   Past หมายถึง อดีต ส่วน Passive มาจากโครงสร้างของ Passive voice (ประโยคที่ประธานถูกกระทำ เน้นกรรม) เมื่อนำมารวมกันแล้วPast

คำเชื่อม Conjunction

คำเชื่อมในภาษาอังกฤษ (Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.4 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “คำเชื่อมในภาษาอังกฤษ หรือ Conjunctions” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด ความหมาย Conjunctions คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม Time and tide wait for no man. เวลาและวารีไม่เคยรอใคร

หลักการของอัตราส่วนที่เท่ากัน

หลักการของอัตราส่วนที่เท่ากัน

ในบทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

หลักการใช้คำราชาศัพท์ รู้ไว้ไม่สับสน

เมื่อได้รู้ความหมาย ที่มาและความสำคัญของคำราชาศัพท์ รวมถึงคำศัพท์หมวดร่างกายไปแล้ว น้อง ๆ ก็คงจะสงสัยใช่ไหมคะ ว่าหลักการใช้คำราชาศัพท์ มีอะไรบ้าง และใช้อย่างไร ต้องใช้แบบไหนถึงจะถูก บทเรียนในวันนี้เราจะมาเรียนรู้หลักการใช้คำราชาศัพท์ที่ถูกต้องกันค่ะ ไปเรียนรู้พร้อม ๆ กันแลย   หลักการใช้คำราชาศัพท์ กับราชวงศ์ไทย     ลำดับพระอิสริยศักดิ์ของพระบรมราชวงศ์สามารถลำดับอย่างคร่าว ๆ ได้ดังนี้ พระบาทสมเด็จพระเจ้าอยู่หัว, สมเด็จพระบรมราชินีนาถ สมเด็จพระราชินี,

NokAcademy_Articles E5

Articles: a/an/the

สวัสดีค่ะนักเรียนชั้น ป. 6 ที่น่ารักทุกคนวันนี้ครูได้สรุปเรื่อง  Articles: a/an/the พร้อมเทคนิคการนำไปใช้ มาฝากกันค่ะ หากพร้อมแล้วก็ไปลุยกันเลย   Articles คืออะไร   Articles เป็นคำคุณศัพท์อย่างหนึ่ง การเรียน เรื่อง Articles นี้ที่มีหน้าที่หลักคือ ใช้นำหน้าคำนาม เราต้องทำความเข้าใจควบคู่ไปกับเรื่องนามนับได้ ( Countable Nouns )

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1