การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐

สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x + 3y – 15 = 0, x + y – 1 = 0, x – 2y = 3   เป็นต้น

รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร

เรียก y = ax + b ว่า รูปมาตรฐานของสมการเชิงเส้นสองตัวแปร ซึ่งอาจเขียนในรูป y = mx + b โดยที่  a หรือ m  คือ ความชันของเส้นตรง

1. เมื่อ m > 0         กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมแหลมกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

ความชันของกราฟเส้นตรง 01

2. เมื่อ m < O        กราฟจะมีลักษณะเป็นเส้นตรงที่ทำมุมป้านกับแกน X

โดยวัดจากแกน X ในทิศทางทวนเข็มนาฬิกา

มุมป้าน ความชันของกราฟเส้นตรง 01

3. เมื่อ m = 0            กราฟจะมีลักษณะเป็นเส้นตรงที่ขนานกับแกน X

ขนานแกน X ระบบสมการเชิงเส้นสองตัวแปร 03

รูปทั่วไปของสมการเชิงเส้นสองตัวแปร  คือ Ax + By + C = 0  เมื่อ x, y เป็นตัวแปร และ A, B, C  เป็นค่าคงตัว  โดยที่ A และ B  ไม่เท่ากับศูนย์พร้อมกัน กราฟของสมการนี้จะเป็นเส้นตรง เรียกว่า กราฟเส้นตรง

กราฟของระบบสมการเชิงเส้นสองตัวแปร

กราฟของระบบสมการจะมีลักษณะ ดังนี้

  1. กราฟของสมการทั้งสองตัดกันที่จุดจุดหนึ่ง ซึ่งจุดนั้นจะเป็นคำตอบของระบบสมการ โดยแสดงค่าของ x และ y ดังรูป

ระบบสมการเชิงเส้นสองตัวแปร 1

2. กราฟของสมการทั้งสองขนานกัน ซึ่งไม่มีคำตอบของระบบสมการ

ระบบสมการเชิงเส้นสองตัวแปร 2

  1. กราฟของสมการทั้งสองทับกันเป็นเส้นตรงเดียวกัน ซึ่งคำตอบของระบบสมการมีมากมายหลายคำตอบ โดยค่าของ x และ y ที่อยู่บนเส้นตรงนั้น

ระบบสมการเชิงเส้นสองตัวแปร 3

การใช้กราฟหาคำตอบของระบบสมการเชิงเส้นสองตัวแปร

ตัวอย่างที่ 1  จงหาคำตอบของระบบสมการต่อไปนี้โดยใช้กราฟ พร้อมทั้งระบุว่าระบบสมการนั้น มี 1 คำตอบ  มีหลายคำตอบ  หรือไม่มีคำตอบ

1)  2x + y = 11

y – x = 8

วิธีทำ    2x + y = 11   ⇒    y = 11 – 2x   

y – x = 8    ⇒    y = 8 + x 

จาก   y = 11 – 2x

แทน x = 2 จะได้  y = 11 – 2(2) = 11 – 4 = 7         (2,7)

แทน x = 0 จะได้  y = 11 – 2(0) = 11 – 0 = 11       (0,11)

แทน x = -2 จะได้  y = 11 – 2(-2) = 11 + 4 = 15    (-2,15)

จาก   y = 8 + x 

แทน x = 2 จะได้  y = 8 + 2 = 10     (2,10)

แทน x = 0 จะได้    y = 8 + 0 = 8    (0,8)

แทน x = -2 จะได้    y = 8 – 2 = 6  ⇒  (-2,6)

ระบบสมการเชิงเส้นสองตัวแปร 4

จะเห็นว่า กราฟของระบบสมการตัดกันที่จุด (1,9)

ดังนั้น คำตอบของระบบสมการมี 1 คำตอบ คือ (1,9)

2) 2y 4x   = 6

x − 2y = 4

วิธีทำ    2y 4x   = 6   ⇒    y = (6 + 4x) ÷ 2 = 3 + 2x

x − 2y = 4  ⇒    y = 4 + 2x

จาก   y = 3 + 2x

แทน x = 1 จะได้  y = 3 + 2(1) = 3 + 2 = 5      (1,5)

แทน x = 0 จะได้   y = 3 + 2(0) = 3 + 0 = 3    (0,3)

แทน x = -1 จะได้   y = 3 + 2(-1) = 3 – 2 = 1    (-1,1)

จาก   y = 4 + 2x

แทน x = 1  จะได้   y = 4 + 2(1) = 4 + 2 = 6     (1,6)

แทน x = 0  จะได้    y = 4 + 2(0) = 4 + 0 = 4     (0,4)

แทน x = -1  จะได้   y = 4 + 2(-1) = 4 – 2 = 2     (-1,2)

ระบบสมการเชิงเส้นสองตัวแปร 5

จะเห็นว่า กราฟทั้งสองขนานกัน จึงไม่มีโอกาสตัดกัน

ดังนั้น ระบบสมการไม่มีคำตอบ

3)  x – y = 5

y – x  = -5

วิธีทำ     x – y = 5  ⇒    y = x – 5

y – x  = -5   ⇒   y = -5 + x

จาก   y = x – 5

แทน x = 1 จะได้  y = 1 – 5 = -4    (1,-4)

แทน x = 0 จะได้  y = 0 – 5 = -5    (0,-5)

แทน x = -1 จะได้ y = -1 – 5 = -6    (-1,-6)

จาก  y = -5 + x

แทน x = 1  จะได้   y = -5 + 1 = -4     (1,-4)

แทน x = 0  จะได้  y = -5 + 0 = -5     (0,-5)

แทน x = -1  จะได้  y = -5 – 1 = -6     (-1,-6)

ระบบสมการเชิงเส้นสองตัวแปร 6

จะเห็นว่า กราฟทั้งสองทับกันสนิท

ดังนั้น ระบบสมการมีหลายคำตอบ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ารแก้ระบบสมการเชิงเส้นสองตัวแปรโดยใช้ อาจไม่สะดวกมากนัก เนื่องจากเสียเวลามาก และในบางครั้งคำตอบที่ได้จากกราฟ อาจพิจารณาหาคำตอบได้ยากอาจมีความคลาดเคลื่อนได้บ้าง จึงต้องอาศัยวิธีการอื่นในการแก้ระบบสมการเชิงเส้นสองตัวแปร ซึ่งจะได้เรียนในลำดับถัดไป

วิดีโอ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Compound sentences Profile

ประโยคความรวม (Compound Sentence)

  สวัสดีค่ะนักเรียนชั้นม.2 ที่น่ารักทุกคน เจอกันอีกแล้วจร้ากับไวยากรณ์การเขียนภาษาอังกฤษและวันนี้ครูจะพาไปดูเทคนิคการการใช้ประโยคความรวมในภาษาอังกฤษกันค่ะ ซึ่งเป็นไม้เบื่อไม้เมามากกับคนที่ไม่ชอบเขียน  ครูเอาใจช่วยทุกคนค่า ไปลุยกันเลย     ประโยคความรวม (Compound Sentence)   ประโยคความรวม ภาษาอังกฤษคือ Compound Sentence อ่านว่า เคิมพาวดฺ เซนเท่นสฺ เป็นประโยคที่ประกอบด้วยประโยคความเดียวอย่างน้อย 2 ประโยคโดยมีคำเชื่อมระหว่างประโยค เช่น for,

ประโยคความเดียวและประโยคความรวมในภาษาอังกฤษ

  สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน เจอกันอีกแล้วจร้ากับไวยากรณ์การเขียนภาษาอังกฤษและวันนี้ครูจะพาไปดูเทคนิคการการใช้ประโยคความเดียว และประโยคความรวมในภาษาอังกฤษกันค่ะ ซึ่งเป็นไม้เบื่อไม้เมามากกับคนที่ไม่ชอบเขียน  ครูเอาใจช่วยทุกคนค่า ไปลุยกันเลย 3 โครงสร้างประโยคในภาษาอังกฤษ การจะเป็นประโยคสมบูรณ์ได้นั้น ประโยคจะต้องประกอบไปด้วย 3 ส่วนสำคัญดังนี้ กริยา หรือ verb (ภาคขยาย) ภาคขยาย จะมีหรือไม่มีก็ได้ การใส่ภาคขยายเข้ามาเพื่อให้ประโยคสมบูรณ์ยิ่งขึ้น ประธาน subject  + กริยา หรือ

มารยาทในการฟังที่ดี

มารยาทในการฟังที่ดีควรมีข้อปฏิบัติอย่างไร??

บทนำ สวัสดีน้อง ๆ ทุกคน วันนี้เราจะพาไปพบกับบทเรียนง่าย ๆ ที่สามารถนำไปใช้ในชีวิตประจำวันได้นั่นก็คือเรื่อง มารยาทในการฟังที่ควรปฏิบัติ ซึ่งเป็นเรื่องที่เด็ก ๆ ควรจะเรียนรู้ไว้ เนื่องจากเราต้องใช้ทักษะการฟัง ในทุก ๆ วัน แต่การจะฟังอย่างมีมารยาทนั้นเราจะต้องปฏิบัติอย่างไรบ้าง ถ้าน้อง ๆ คนไหนอยากรู้ เดี๋ยวเราไปดูบทเรียนเรื่องนี้พร้อม ๆ กันเลยดีกว่า     มารยาท

ตัวอย่างโจทย์ปัญหา + – × ÷ เศษส่วนและจำนวนคละ

หัวใจสำคัญของการทำโจทย์ปัญหาก็คือการวิเคราะห์ประโยคที่เป็นตัวหนังสือออกมาเป็นสัญลักษณ์ทางคณิตศาสตร์หรือเรียกสั้นๆว่า “การตีโจทย์”ถ้าเราวิเคราะห์ถูกต้องเราก็สามารถแสดงวิธีคิดได้ออกมาอย่างถูกต้องคำตอบที่ได้ก็จะถูกต้องตามมาด้วย ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้คือการฝึกวิเคราะห์โจทย์ปัญหาและการแสดงวิธีทำ รับรองว่าถ้าอ่านบทความนี้แล้วนำไปใช้จะได้คำตอบที่ถูกทุกข้ออย่างแน่นอน

กาพย์พระไชยสุริยา เรียนรู้ความเป็นมาของแบบเรียนภาษาไทยอันทรงคุณค่า

กาพย์พระไชยสุริยา   กาพย์พระไชยสุริยาเป็นอีกหนึ่งบทเรียนที่น้อง ๆ ทุกคนจะได้ศึกษากัน แต่รู้ไหมคะว่าคำกาพย์ที่แต่งโดยสุนทรภู่นี้เป็นกาพย์แบบไหน มีประวัติความเป็นมาอย่างไร เหตุใดถึงมาอยู่ในแบบเรียนวิชาภาษาไทยได้ วันนี้เราจะพาน้อง ๆ ไปทำความรู้จักกับประวัติความเป็นมาของกาพย์พระไชยสุริยา รวมถึงเรื่องลักษณะคำประพันธ์และสรุปเนื้อเรื่องโดยย่อ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมาของกาพย์พระไชยสุริยา     กาพย์พระไชยสุริยา เป็นวรรณคดีคำกาพย์ที่สุนทรภู่แต่ง มีความยาว 1 เล่มสมุดไทย นักวรรณคดีและนักวิชาการสันนิษฐานว่าสุนทรภู่แต่งขึ้นขณะบวชอยู่ที่วัดเทพธิดาระหว่าง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1